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A B S T R A C T   

Background: Emissions control programs targeting certain air pollution sources may alter PM2.5 composition, as 
well as the risk of adverse health outcomes associated with PM2.5. 
Objectives: We examined temporal changes in the risk of emergency department (ED) visits for cardiovascular 
diseases (CVDs) and asthma associated with short-term increases in ambient PM2.5 concentrations in Los Angeles, 
California. 
Methods: Poisson log-linear models with unconstrained distributed exposure lags were used to estimate the risk of 
CVD and asthma ED visits associated with short-term increases in daily PM2.5 concentrations, controlling for 
temporal and meteorological confounders. The models were run separately for three predefined time periods, 
which were selected based on the implementation of multiple emissions control programs (EARLY: 2005–2008; 
MIDDLE: 2009–2012; LATE: 2013–2016). Two-pollutant models with individual PM2.5 components and the 
remaining PM2.5 mass were also considered to assess the influence of changes in PM2.5 composition on changes in 
the risk of CVD and asthma ED visits associated with PM2.5 over time. 
Results: The relative risk of CVD ED visits associated with a 10 μg/m3 increase in 4-day PM2.5 concentration (lag 
0–3) was higher in the LATE period (rate ratio = 1.020, 95% confidence interval = [1.010, 1.030]) compared to 
the EARLY period (1.003, [0.996, 1.010]). In contrast, for asthma, relative risk estimates were largest in the 
EARLY period (1.018, [1.006, 1.029]), but smaller in the following periods. Similar temporal differences in 
relative risk estimates for CVD and asthma were observed among different age and season groups. No single 
component was identified as an obvious contributor to the changing risk estimates over time, and some com-
ponents exhibited different temporal patterns in risk estimates from PM2.5 total mass, such as a decreased risk of 
CVD ED visits associated with sulfate over time. 
Conclusions: Temporal changes in the risk of CVD and asthma ED visits associated with short-term increases in 
ambient PM2.5 concentrations were observed. These changes could be related to changes in PM2.5 composition (e. 
g., an increasing fraction of organic carbon and a decreasing fraction of sulfate in PM2.5). Other factors such as 
improvements in healthcare and differential exposure misclassification might also contribute to the changes.   

1. Introduction 

Fine particulate matter (PM2.5) is a well-established environmental 
health risk factor. Numerous epidemiological studies have shown 

associations between long-term exposure to PM2.5 and the increased risk 
of cardiorespiratory diseases (Lu et al., 2015). Growing evidence also 
shows the adverse effects of short-term exposure to PM2.5 on cardiore-
spiratory diseases (Bell et al. 2004, 2013). Biological hypotheses suggest 
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that short-term PM2.5 exposure may lead to or exacerbate cardiovascular 
diseases (CVDs) through neurogenic and inflammatory processes (Brook 
et al., 2004) and the acceleration of the development of atherosclerosis 
(Sun et al., 2005). The contribution of PM2.5 to oxidative stress and 
allergic inflammation may lead to more immediate exacerbations of 
respiratory diseases, especially asthma (Casillas et al., 1999; Guarnieri 
and Balmes, 2014; Halonen et al., 2008; Zanobetti et al., 2000). 

As a mixture of many chemical components, certain PM2.5 compo-
nents may have higher toxicity than others for certain health outcomes 
(Cho et al., 2018; Zou et al., 2016). National-scale epidemiological 
studies have indicated that the risk of adverse health outcomes associ-
ated with short-term increases in PM2.5 concentrations varied by region 
and sub-populations, leading to the hypothesis that the observed het-
erogeneity may be related to regional differences in PM2.5 composition 
(Bell et al. 2007, 2009; Dominici et al., 2007; Lippmann et al., 2006). 
However, factors other than differences in PM2.5 composition such as 
different levels of population susceptibility and differential exposure 
misclassification may also contribute to the observed regional variation. 
In contrast, estimating temporal changes in PM2.5 health associations in 
the same region is an approach to mitigate the influence of these other 
factors. Few epidemiological studies have assessed temporal variation in 
the risk of cardiorespiratory disease outcomes associated with 
short-term increases in PM2.5 concentrations. For example, recent work 
evaluated health effects of short-term exposure to PM2.5 in New York 
State before, during, and after a period between 2005 and 2016 when 
major emission regulations went into effect and significant emission 
changes occurred (Croft et al., 2019; Hopke et al., 2019; Zhang et al., 
2018). This series of studies found that even with decreasing PM2.5 
concentrations, the risk of cardiovascular (Zhang et al., 2018) and res-
piratory diseases (Croft et al., 2019; Hopke et al., 2019) was elevated 
after the implementation of emission policies and an economic reces-
sion, which could be driven by temporal changes in PM2.5 composition 
and increased toxicity of the PM2.5 mixture (Squizzato et al., 2018). 
Changes in the acute response to PM2.5 over time have also been 
observed in other regions. Abrams et al. (2019) found a smaller risk of 
cardiorespiratory emergency department (ED) visits associated with 
short-term increases in PM2.5 concentrations after emissions control 
programs implemented during 1999–2013 were fully realized in 
Atlanta, Georgia. Outside of the United States, Kim et al. (2017) reported 
an increased risk of asthma hospitalizations associated with short-term 
increases in PM2.5 concentrations in Seoul, South Korea from 2003 to 
2011 when the Korean air quality standards had been strengthened. In 
summary, the observed temporal changes in PM2.5 health associations 
reported by previous studies were inconsistent, and few studies also 
examined temporal changes in associations between individual PM2.5 
components and adverse health outcomes. 

Southern California has some of the highest PM2.5 levels in the 
United States, and the area has implemented stringent control programs. 
These programs cover almost all controllable emission sources, 
including on-road and off-road mobile emissions, stationary sources 
such as fuel combustion, waste disposal, and industrial processes, and 
area-wide sources such as solvent evaporation, to achieve the compli-
ance of the National Ambient Air Quality Standards (NAAQS) reducing 
PM2.5 and its major precursors (e.g., nitrogen oxides, sulfur oxides, and 
volatile organic compounds) (Lurmann et al., 2015). In addition, the 
great recession in the late 2000s may have also accelerated the emission 
reductions in southern California (Tong et al., 2016). In response, the air 
quality in southern California has significantly improved. The changes 
in PM2.5 concentrations and composition in southern California provide 
a unique opportunity to investigate whether the risk of acute cardiore-
spiratory health events associated with each unit change in PM2.5 con-
centration, an indicator of its toxicity, has changed over time due to 
different source emissions and resulting mixtures. Therefore, we exam-
ined the temporal variation in the risk of CVD and asthma ED visits 
associated with short-term increases in PM2.5 concentrations over the 
period of 2005–2016 in Los Angeles, California. We similarly examined 

the temporal variation in the risk of CVD and asthma ED visits associated 
with individual PM2.5 components. 

2. Data and methods 

2.1. Study population 

ED visits data were provided by the California Office of Statewide 
Health Planning and Development (OSHPD). The study population was 
restricted to ED patients who lived in any ZIP code area located within 
15 miles and visited an ED within 30 miles of the PM2.5 monitoring sites 
in downtown Los Angeles and a nearby community Rubidoux (a total of 
147 hospitals) from January 1, 2005 to December 31, 2016. Fig. S1 
shows the study domains. We included patients with a primary diagnosis 
(at time of ED visit) of CVD, including ischemic heart disease, cardiac 
dysrhythmia, congestive heart failure, peripheral vascular disease, and 
stroke (International Classification of Disease, ICD 9 = 410, 411, 412, 
413, 414, 427, 428, 433, 434, 435, 436, 437, 440, 443, 444, 445, 447; 
ICD 10 =G45, I20, I21, I22, I24, I25, I46, I47, I48, I49, I50, I63, I64, I65, 
I66, I67, I70, I73, I74, I75, I77, I79), and asthma (ICD 9 = 493; ICD 10 =
J45, J46). Multiple ED visits by the same patient on the same day for the 
same outcome were only counted once. Overall, there were 1,172,516 
ED visits for CVD and 522,379 ED visits for asthma over the study 
period. ED visits were aggregated by day to obtain a daily count time- 
series for each outcome around each monitor-buffer. The Institutional 
Review Board (IRB) at Emory University approved this study and 
granted an exemption from informed consent requirements, given the 
minimal risk nature of the study and the infeasibility of obtaining 
informed consent from individual patients. 

2.2. Air pollution and weather 

Daily average PM2.5 mass and component concentrations were 
retrieved from two air quality monitoring stations in downtown Los 
Angeles (Air Quality System, AQS site ID: 06-037-1103) and Rubidoux 
(AQS site ID: 06-065-8001). These stations are both NCore Multi-
pollutant Monitoring Network sites (Fig. S1). Major PM2.5 components 
that were monitored included elemental carbon (EC), organic carbon 
(OC), nitrate, and sulfate. Trace components were also monitored, and 
components with less than 20% of observations below the minimum 
detection level (MDL) were selected for inclusion in this analysis, 
including iron (Fe), sulfur (S), calcium (Ca), potassium (K), silicon (Si), 
zinc (Zn), bromine (Br), and copper (Cu). PM2.5 mass concentrations 
were primarily measured using the Federal Reference Methods (FRM) 
and Federal Equivalent Methods (FEM). Acceptable PM2.5 air quality 
index & speciation mass (non-FRM/FEM) measurements were also used 
to increase data coverage. Non-FRM/FEM measurements were linearly 
calibrated with the FRM/FEM measurements. For EC and OC, linear 
adjustments were conducted to merge measurements from different 
samplers and analytical methods (Solomon et al., 2014). At the two 
monitoring sites, PM2.5 mass concentrations were generally sampled 
daily while component data were collected at 1-in-3 or 1-in-6 day in-
tervals. Daily maximum 8-h ozone concentrations (unit: 
parts-per-million, ppm, 10− 6) at the two NCore stations were also 
acquired. 

Meteorological data were retrieved from the California Irrigation 
Management Information System (CIMIS) weather stations managed by 
the California Department of Water Resources (https://cimis.water.ca. 
gov/). Meteorological variables included daily maximum air tempera-
ture and mean dew-point temperature. These variables were observed at 
the daily level at two CIMIS stations inside the two monitor-buffers. 

2.3. Emissions and time periods 

Emissions control programs implemented in southern California 
from 1990s onwards covered virtually all controllable air pollution 
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sources. Key programs targeted on-road vehicle emissions, such as Low 
Emission Vehicle (LEV I and II) starting in the early 1990s and the 
heavy-duty diesel vehicle emission standard reductions and fuel refor-
mulation programs in the 2000s. Important programs also targeted off- 
road emissions from oceangoing vessels, harbor craft, trains, and agri-
cultural equipment in the 2000s and 2010s. Emissions from stationary 
point sources and area sources were controlled during these periods as 
well. These programs directly led to the reduction of primary PM2.5 
emissions and indirectly contained the formation of secondary PM2.5 by 
controlling its precursors such as sulfur oxides (SOx), nitrogen oxides 
(NOx), and volatile organic compounds (VOCs) (Lurmann et al., 2015). 

Since these broad emissions control programs were often modified 
during implementation, we relied on annualized emissions inventories 
to evaluate their cumulative effects and define time periods for our 
epidemiological analysis corresponding to different periods of imple-
mentation. Annualized emission data were retrieved from the California 
Emissions Projection Analysis Model (CEPAM) 2016 SIP - Standard 
Emission Tool based on the California Air Resources Board (CARB) 2012 
inventory. The geographic area of the inventory is the South Coast Air 
Basin (SoCAB) which captures almost all of the two monitor-buffers. 
During the period of 2005–2016, primary PM2.5 emission decreased 
steadily from ~35 to ~18 tons per day. The source category with the 
most significant reduction was mobile sources. This emission trend was 
in tandem with restrictive control programs targeting mobile sources in 
this period. In comparison, the PM2.5 emission from stationary and area- 
wide sources remained almost constant at ~15 and ~30 tons per day, 
respectively. Since the emissions control programs, especially mobile 
sources-related programs, took effect over long time periods and their 
effects were not always immediately fully realized, there were no clear- 
cut reference or intervention intervals during our 2005–2016 study 
period. Therefore, we defined three equally separated time periods, the 
EARLY (2005–2008), MIDDLE (2009–2012), and LATE (2013–2016) 
periods, for our epidemiological analysis. 

2.4. Statistical analysis 

2.4.1. Model specification 
Quasi-Poisson log-linear models were used to estimate the risk of 

CVD and asthma ED visits associated with short-term increases in PM2.5 
concentrations separately for the EARLY, MIDDLE, and LATE periods. 
Rate ratios (RRs) with 95% confidence intervals (CIs) were calculated 
based on per 10 μg/m3 increase in PM2.5 concentration to enable the 
comparison of relative risk estimates between time periods. 

Poisson models were specified with distributed lags to reflect cu-
mulative effects of PM2.5 exposure over four days (lag 0–3) and over 
eight days (lag 0–7) (lag 0 is the same day, and lag 1 is the previous day, 
etc.), which was motivated by previous studies suggesting that the effect 
of PM2.5 may occur over multiple days (Croft et al., 2019; Hopke et al., 
2019; Zhang et al., 2018). Models were also controlled for meteorology, 
via moving averages (MAs) of daily maximum air temperature and mean 
dew-point temperature using cubic splines with 4 degrees of freedom. 
The MAs of air temperature and dew-point temperature corresponded to 
the distributed lags of exposure (i.e., MA of lag days 0–3 or lag days 0–7). 
Cubic splines for calendar dates using 6 (for CVD) or 12 (for asthma) 
knots per year were included to control for long-term time trends and 
seasonality. The degrees of freedom of temperature and time splines 
were determined based on model specification in previous studies on 
short-term associations between PM2.5 and cardiorespiratory disease 
outcomes (Kim et al., 2012; Tian et al., 2017). Indicator variables for 
day-of-week (Monday through Sunday) and holidays (0 = non-holidays, 
1 = federal and Federal Reserve Board holidays) were also included. As 
data were not available for some hospitals over the entire study period 
(N = 31), an indicator variable was included for these hospitals to ac-
count for any changes to ED visit totals attributable to hospital data 
availability. For asthma, the ED visit counts for influenza were used as 
an additional confounder to control for viral-induced asthma in flu 

seasons (Glezen, 2006). The distributed lag model can be expressed as: 

log(E(Yt) ) = α +
∑D

q=0
βt− qPM2.5(t− q) + [confounders] D = 3 or  7 (1)  

where E(Yt) is the expectation of the ED visit counts on day t, PM2.5(t− q)
is the PM2.5 concentration q days before day t, and the sum of βt− q is the 
main parameter of interest for distributed lagged associations. 

The relative risk estimates of each outcome (CVD and asthma), lag 
structure (lags 0–3 and 0–7), and time period (EARLY, MIDDLE, LATE) 
were estimated separately for Los Angeles and Rubidoux. The effects for 
each model specification were then pooled together across sub-domains 
by inverse-variance weighting. Statistical significance of the difference 
between the RR estimates in two time periods was estimated with the 
assumption that the logarithms of two RRs were independent and nor-
mally distributed. 

2.4.2. Factors influencing PM2.5 health associations over time 
In order to assess and account for changes in population age structure 

and seasonal PM2.5 composition as potential factors contributing to 
observed differences in PM2.5 health associations between time periods, 
we conducted age and season-stratified analyses, in which Poisson 
models were run by age group (ages 1–18, 19–64, and 65+) and season 
(dry season: May through October; wet season: November through 
April). California has distinct dry and wet seasons and the concentra-
tions of PM2.5 and its components may vary seasonally according to the 
nature of the predominant emission and meteorological factors 
(Dolislager and Motallebi, 1999). We anticipated that within these 
groupings, the relative risk estimates of CVD and asthma ED visits 
associated with PM2.5 should remain similar across time periods. Any 
remaining differences in relative risk estimates between time periods 
should be due to external factors (such as changes in PM2.5 composition 
over time within each group). 

In addition, to examine whether changes in PM2.5 composition 
contributed to the observed differences in PM2.5 health associations 
between time periods, we considered two-pollutant models that 
included (one by one) individual PM2.5 components and the remaining 
proportion of PM2.5 mass (calculated as PM2.5 – a specific PM2.5 
component). In this manner, the health associations for individual PM2.5 
components controlling for the remaining PM2.5 mass were estimated. 
Since the component data were observed every 3 or 6 days, moving 
averages with available observations over four days (i.e., MA 0–3) and 
over eight days (i.e., MA 0–7), instead of distributed lags, were calcu-
lated to reflect multiple-day cumulative effects of exposure. Although 
the moving average method might potentially lead to higher exposure 
misclassification, this approach considerably increased data coverage 
and statistical power. The two-pollutant model can be expressed as: 

log(E(Yt))=α+β1×componentt+β2×(PM2.5 − component)t+[confounders]
(2)  

where E(Yt) is the expectation of the ED visit counts, and componentt 
and (PM2.5 − component)t denote the moving averages of a specific 
component and the remaining PM2.5 mass from day t to the previous 3 or 
7 days, respectively. The confounders here are the same as shown in Eq. 
(1). In this two-pollutant model, β1 reflects the log-ratio estimate of a 
PM2.5 component controlling for the remaining PM2.5 mass, and β2 re-
flects the log-ratio estimate of the remaining PM2.5 mass controlling for 
the specific component. We anticipated that the health associations for 
specific PM2.5 components (controlling for the remaining PM2.5 mass) 
should remain similar between time periods (assuming no other external 
factors contributing to changes in associations), given that individual 
PM2.5 components are less complex in terms of composition than the 
PM2.5 mixture and as such their toxicity should be less variant over time. 
We also anticipated that if the health associations for the remaining 
PM2.5 mass (controlling for the specific component) corresponded to the 
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temporal pattern displayed by PM2.5 total mass, then this specific 
component may not influence the changing PM2.5 toxicity over time. 

2.5. Sensitivity analysis 

Sensitivity analysis was conducted to examine the robustness of the 
relative risk estimates across time periods. For meteorological con-
founding, we tested different degrees of freedom of the cubic splines of 
daily maximum air temperature and mean dew-point temperature (df =
2–6). We also examined the addition of cubic splines of daily minimum 
air temperature (df = 4). For long-term time trends, different annual 
knots were tested (df = 4–8 for CVD and 10–14 for asthma). 

Additionally, we evaluated associations between tomorrow’s pollutant 
levels (lag − 1) and today’s ED visits controlling for today’s pollutant 
(lag 0). Tomorrow’s pollutant levels should not be associated with to-
day’s ED visits as cause must precede effect (Flanders et al., 2011). 
Furthermore, we redefined three time periods by (1) moving the year of 
2008 to the MIDDLE period and (2) moving the year of 2012 to the LATE 
period to test the sensitivity of the risk estimates on interval separation. 
Finally, we evaluated the potential for confounding by exposure to 
ozone collocated with PM2.5 by adding daily maximum 8-h ozone con-
centrations as an additional confounder, as there is a large body of 
research showing the risk of cardiorespiratory disease outcomes asso-
ciated with short-term increases in ozone concentrations (Devlin et al., 

Fig. 1. Box plots of (a) mass concentrations of PM2.5 and four major components and (b) percentages of four major components in PM2.5 total mass during the three 
time periods (EARLY: 2005–2008; MIDDLE: 2009–2012; LATE: 2013–2016). The measurements are the averages of two sub-domains. The box shows the 25th, 50th, 
and 75th percentiles and the circle shows the mean value. 

J. Bi et al.                                                                                                                                                                                                                                        



Environmental Research 190 (2020) 109967

5

2012; Ji et al., 2011). 

3. Results 

3.1. PM2.5 concentrations 

Fig. 1(a) shows the means, medians, and 25th/75th percentiles of the 
concentrations of PM2.5 total mass and four major components (OC, EC, 
sulfate, and nitrate) during the three time periods (averages of two sub- 
domains). The concentrations of PM2.5 and four major components 
decreased over time. The mean PM2.5 concentration dropped by 26% 
from 16.6 μg/m3 in the EARLY period to 12.2 μg/m3 in the LATE period. 
The mean concentrations of OC, EC, sulfate, and nitrate dropped by 
26%, 36%, 42%, and 58%, respectively. For most components, the 
largest drop in concentration occurred between the EARLY and the 
MIDDLE period, indicating that in addition to emissions control pro-
grams, the 2008 economic recession may have also played an important 
role in the decreased pollution levels. The mean concentrations of other 
trace PM2.5 components across time periods are shown in Fig. S2. The 
trace components with a decreasing trend in concentration over time 
included Ca, Cu, Fe, Si, S, and Zn. The concentration of Br remained 
about the same while the concentration of K increased slightly over time. 

Fig. 1(b) shows the percentage changes of four major PM2.5 com-
ponents over the time periods. The percentage changes of PM2.5 com-
ponents in PM2.5 total mass over time were analyzed with the 
reconstructed PM2.5 mass, i.e., the sum of the masses of 12 components. 
The percentages of EC and nitrate in PM2.5 total mass were similar over 
time with means of ~11% and ~30%, respectively. The percentage of 
sulfate in PM2.5 decreased from 20% in the EARLY period to 15% in the 
LATE period. A decreased percentage of sulfate over time may reflect the 
effectiveness of emissions control programs on on-road mobile sources, 
stationary sources, and changes at the Ports of Long Beach and Los 
Angeles in fuels and in-port electrification, in which the emission of a 
major precursor of sulfate, SOx, had a significant reduction (Lurmann 

et al., 2015). In contrast, the percentage of OC in PM2.5 increased from 
28% in the EARLY period to 33% in the LATE period. The increased 
percentage of OC over time echoes a previous finding that there was a 
slight increase in secondary organic aerosols (SOAs) as NOx emissions 
decreased in Los Angeles because non-methane organic gas (NMOG) 
that previously reacted with NOx was now available to form more SOAs 
(Zhao et al., 2017). Fig. S3 shows the percentage changes of 8 trace 
components over the time periods. The components contributing to an 
increasing fraction of PM2.5 mass over time included Br, Ca, Cu, Fe, K, 
and Si as the total PM2.5 mass concentration declined. The percentage of 
Zn in PM2.5 remained about the same over time. 

3.2. Emergency department visits data 

Table 1 summarizes the characteristics of ED patients and numbers of 
ED visits by health outcome (CVD and asthma), sub-domain (Los 
Angeles and Rubidoux), and period (EARLY, MIDDLE, and LATE). ED 
visit totals for CVD and asthma increased by 15% and 12%, respectively, 
from the EARLY to LATE period in the study domains. Three time pe-
riods had similar age structures for two health outcomes. Patients with 
CVD had a mean age of 65 years (25th, 75th percentiles = [54 years, 79 
years]) and those with asthma had a mean age of 28 years (25th, 75th 

percentiles = [7 years, 46 years]). There was a relatively even split 
between genders in the CVD and asthma patient populations, with a 
slight increase in percentage of male patients over time. Patients with 
CVD and asthma were predominantly white. The structure of race/ 
ethnicity was stable over time. Overall, the characteristics of the ED 
patients remained relatively consistent over the study period and the 
increased ED visit numbers might be related to the increased population 
in Los Angeles (the United States Census Bureau, https://data.census. 
gov/). 

Table 1 
Summary statistics for two health outcomes (CVD and asthma), PM2.5 composition (total mass, four major components, and eight trace components), and weather 
parameters (daily maximum air temperature and mean dew-point temperature) in Los Angeles and Rubidoux during the three time periods.   

Los Angeles Rubidoux 

EARLY (2005–2008) MIDDLE (2009–2012) LATE (2013–2016) EARLY (2005–2008) MIDDLE (2009–2012) LATE (2013–2016) 

CVD Cases 
N 277,710 292,657 308,303 77,723 104,375 111,748 
Age (years) 66.2 (55.0, 80.0)a 66.4 (55.0, 80.0) 66.1 (55.0, 79.0) 61.9 (50.0, 76.0) 61.9 (51.0, 75.0) 62.7 (52.0, 75.0) 
Gender (% male) 49.1 49.4 51.3 49.0 50.8 52.0 
Race (% white) 51.0 47.8 49.2 65.7 61.4 57.3 
Asthma Cases 
N 124,577 130,657 133,717 36,085 48,899 48,444 
Age (years) 28.8 (7.0, 47.0)a 29.0 (7.0, 48.0) 29.2 (8.0, 47.0) 25.8 (7.0, 42.0) 26.1 (7.0, 43.0) 27.1 (8.0, 44.0) 
Gender (% male) 47.1 47.8 49.4 48.3 48.8 49.5 
Race (% white) 38.1 36.8 39.8 54.8 53.5 49.0 
Pollutants (μg/m3) 
Total PM2.5 16.58 (9.55)b 12.96 (6.73) 12.21 (6.47) 18.76 (11.90) 13.88 (8.70) 12.48 (7.80) 
EC 1.40 (0.79) 1.17 (0.68) 0.90 (0.48) 1.22 (0.80) 1.01 (0.70) 0.80 (0.52) 
OC 3.68 (1.69) 2.87 (1.34) 2.73 (1.18) 3.51 (1.84) 2.62 (1.34) 2.56 (1.22) 
Nitrate 5.43 (5.73) 3.74 (3.40) 3.15 (3.31) 7.02 (6.34) 5.09 (4.58) 3.74 (3.85) 
Sulfate 3.37 (2.91) 1.97 (1.57) 1.43 (1.09) 2.52 (1.94) 1.63 (1.23) 1.26 (1.08) 
Fe 0.21 (0.17) 0.20 (0.14) 0.18 (0.11) 0.17 (0.13) 0.14 (0.10) 0.15 (0.09) 
S 1.08 (1.01) 0.67 (0.52) 0.52 (0.38) 0.83 (0.64) 0.55 (0.41) 0.44 (0.33) 
Ca 0.08 (0.05) 0.07 (0.05) 0.06 (0.04) 0.14 (0.15) 0.08 (0.05) 0.08 (0.06) 
K 0.12 (0.61) 0.08 (0.28) 0.09 (0.32) 0.12 (0.33) 0.09 (0.22) 0.11 (0.45) 
Si 0.12 (0.14) 0.12 (0.11) 0.11 (0.08) 0.18 (0.19) 0.14 (0.11) 0.16 (0.15) 
Zn 0.02 (0.02) 0.01 (0.01) 0.01 (0.01) 0.02 (0.02) 0.01 (0.01) 0.01 (0.01) 
Br 0.01 (0.00) 0.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.01 (0.00) 0.01 (0.00) 
Cu 0.02 (0.02) 0.01 (0.01) 0.01 (0.01) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01) 
Weather Parameters (◦C) 
Maximum Temperature 25.0 (19.7, 30.2)a 24.9 (19.9, 29.4) 26.4 (21.8, 30.9) 25.5 (19.6, 31.6) 25.2 (19.7, 30.8) 26.2 (21.3, 31.4) 
Dew-Point Temperature 8.7 (5.2, 13.3) 8.7 (5.1, 13.3) 9.2 (5.2, 14.1) 6.0 (2.2, 11.1) 5.9 (2.4, 11.0) 6.3 (2.0, 11.6)  

a Mean (25th, 75th Percentiles). 
b Mean (Standard Deviation). 
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3.3. Relative risks associated with PM2.5 total mass 

Table 2 and Fig. 2(a) show the rate ratios (RRs) and 95% confidence 
intervals (CIs) for the associations of CVD ED visits and PM2.5 total mass 
during the three time periods. Both lags 0–3 and 0–7 showed a similar 
increasing trend over time, where the risk estimates of CVD ED visits 
associated PM2.5 were smaller in the EARLY period and larger in the 
later periods. For lag 0–3, the RR in the LATE period (1.020, 95% CI =
[1.010, 1.030]) was significantly larger than that in the EARLY period 
(1.003, [0.996, 1.010]) (Table 2). For lag 0–7, all three period-specific 
RRs were significantly different. Fig. 2(b)–(c) show the age-specific 
risk estimates of CVD ED visits associated with PM2.5 during the three 
time periods. The age groups only included ages of 19–64 and 65+
because there were very few ED visits for CVD under the age of 18 (<2 
visits per day on average). The two age groups showed a similar trend in 
RR across time periods as the all-age analysis where the RRs increased 
significantly over time. Fig. 2(d)–(e) show the season-specific risk esti-
mates of CVD ED visits associated with PM2.5 during the three time 
periods. Trends in RRs across time periods for each season were similar 
to those observed for the year-round analysis. 

Table 2 and Fig. 3(a) show the RRs with 95% CIs for the associations 
of asthma ED visits and PM2.5 total mass during the three time periods. 
Both lag structures showed a similar pattern over time, where in contrast 
to the results for CVD the EARLY period had the largest and significant 
RRs (lag 0–3: 1.018, [1.006, 1.029]; lag 0–7: 1.036, [1.018, 1.056]) 
compared to the following two time periods. Fig. 3(b)–(c) show the age- 
specific risk estimates during the three time periods for ages of 1–18 and 
19–64, respectively. The RRs in the elderly group (ages 65+) had large 
95% CIs because of a small sample size (~10 visits per day on average) 
and are not shown in the figure. Adult groups (ages 1–18 and 19–64) had 
a similar trend in RR to the all-age analysis where the RRs were largest in 
the EARLY period. For children (ages 1–18), the risk estimates of asthma 
ED visits associated with PM2.5 were similar in the EARLY and LATE 
periods, and smaller in the MIDDLE period, while the 95% CIs were 
large. Fig. 3(d)–(e) show the season-specific risk estimates during the 
three time periods. Trends in RRs across time periods for each season 
were similar to those observed for the year-round analysis. 

3.4. Relative risks associated with PM2.5 components 

For each PM2.5 component, we ran a two-pollutant model that 
included the PM2.5 component of interest and the remaining PM2.5 mass 
(PM2.5 – that specific PM2.5 component). Due to sparser observations 
and the use of moving averages, PM2.5 component concentrations had 
less temporal variation, resulting in larger uncertainties than that of 
PM2.5 total mass. 

Fig. 4 shows the relative risk estimates of CVD ED visits associated 
with each 10 μg/m3 increase in PM2.5 component concentration, con-
trolling for the remaining PM2.5 mass. OC and nitrate showed a similar 
increasing trend in RR over time to PM2.5 total mass (Fig. 2(a)). EC, Fe, 

and Ca showed small RRs which tended to be less than 1.0 in the EARLY 
period and close to 1.0 in the following periods. Sulfate and S had a high 
correlation (r = 0.95) during the study period so they had a similar 
pattern, where the RRs were largest and significant in the EARLY period 
and close to 1.0 in the later periods. The relative risk associated with Si 
was less than 1.0 and not significant. K had a unique pattern where the 
MIDDLE period tended to have the largest risk though with a large un-
certainty. Fig. 5 shows the relative risk estimates of asthma ED visits 
associated with each 10 μg/m3 increase in PM2.5 component concen-
tration, controlling for the remaining PM2.5 mass. Nitrate, OC, and EC 
showed a similar pattern to PM2.5 total mass where the EARLY period 
had the largest RRs. For sulfate, S, and K, the MIDDLE-period RRs tended 
to be largest and significant. Associations of Zn, Br, and Cu with CVD and 
associations of Fe, Ca, Si, Zn, Br, and Cu with asthma were consistent 
with the null (RR = 1.0), with large uncertainties in risk estimates, 
which are not shown in the results. 

Overall, this analysis demonstrated temporal variation in the risk of 
CVD and asthma ED visits associated with short-term increases in PM2.5 
component concentrations. Given that these PM2.5 components are less 
complex in terms of composition than the PM2.5 mixture and that their 
toxicities should be less variant over time, the observed temporal vari-
ation in relative risk suggests that these components might still be 
proxies of some complex mixtures. 

3.5. Relative risks associated with the remaining PM2.5 mass 

Figure S4 shows the relative risk estimates of CVD ED visits associ-
ated with each 10 μg/m3 increase in the remaining PM2.5 mass con-
centration (i.e., β2 in Eq. (2)). Apart from nitrate, the remaining PM2.5 
mass for all other components showed a similar pattern to PM2.5 total 
mass. For nitrate, all RRs were close to 1.0 and not statistically signifi-
cant, which might be caused by unstable estimated coefficients due to a 
high correlation between PM2.5 total mass and nitrate (r = 0.88). Fig. S5 
shows the relative risk estimates of asthma ED visits associated with 
increased remaining PM2.5 mass concentrations. Similarly, the remain-
ing PM2.5 mass was similar to PM2.5 total mass in terms of the temporal 
trend of RRs, and some variation might happen by chance (e.g., OC) or 
due to a high correlation with PM2.5 total mass (e.g., nitrate). In general, 
for all formulations of remaining PM2.5 mass, the temporal trends in 
relative risk were similar to that of PM2.5 total mass, thus indicating that 
no single PM2.5 component (when removed from the PM2.5 mixture) was 
an obvious contributor to those trends. 

3.6. Sensitivity analysis 

With different degrees of freedom (df = 2–6) of cubic splines of daily 
maximum air temperature and mean dew-point temperature, the rela-
tive risk estimates of CVD and asthma ED visits associated with PM2.5 
were consistent (Fig. S6). When adding daily minimum air temperature 
(df = 4) as another confounder, most of the risk estimates were stable 

Table 2 
Rate ratios (95% confidence intervals) of PM2.5 and CVD and asthma ED visits (per 10 μg/m3 increase in PM2.5 concentration).  

Outcome Lag Period Rate Ratio (95% Confidence Interval) Difference of Rate Ratios (95% Confidence Interval) Between Two Periods 

CVD 0–3 EARLY 1.003 (0.996, 1.010) MIDDLE – EARLY 0.0058 (− 0.0054, 0.0170) 
MIDDLE 1.009 (1.000, 1.018)a LATE – MIDDLE 0.0112 (− 0.0021, 0.0246) 
LATE 1.020 (1.010, 1.030)a LATE – EARLY 0.0170 (0.0049, 0.0292)a 

0–7 EARLY 0.991 (0.981, 1.002) MIDDLE – EARLY 0.0190 (0.0027, 0.0354)a 

MIDDLE 1.010 (0.998, 1.023) LATE – MIDDLE 0.0223 (0.0023, 0.0423)a 

LATE 1.033 (1.017, 1.049)a LATE – EARLY 0.0413 (0.0227, 0.0599)a 

Asthma 0–3 EARLY 1.018 (1.006, 1.029)a MIDDLE – EARLY − 0.0311 (− 0.0497, − 0.0125)a 

MIDDLE 0.986 (0.972, 1.001) LATE – MIDDLE 0.0171 (− 0.0046, 0.0388) 
LATE 1.003 (0.988, 1.020) LATE – EARLY − 0.0140 (− 0.0336, 0.0056) 

0–7 EARLY 1.036 (1.018, 1.056)a MIDDLE – EARLY − 0.0553 (− 0.0846, − 0.0260)a 

MIDDLE 0.981 (0.959, 1.003) LATE – MIDDLE 0.0173 (− 0.0179, 0.0525) 
LATE 0.998 (0.971, 1.025) LATE – EARLY − 0.0380 (− 0.0704, − 0.0056)a  

a Statistically significant at an alpha level of 0.05. 
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apart from the risk of CVD ED visits in the MIDDLE period (Fig. S7). 
However, the RRs were still within the original 95% CIs, indicating that 
the change might happen by chance. Figs. S8 and S9 show that the risk 
estimates were consistent with different annual knots in time splines and 
in redefined time periods, respectively. After controlling for ozone, the 
risk estimates remained consistent (Fig. S10). Finally, there were no 
significant associations between tomorrow’s pollutant levels (lag − 1) 
and today’s ED visits when controlling for today’s pollutant levels (lag 
0), and the lag 0 RRs and 95% CIs remained about the same before and 
after adding tomorrow’s pollutant levels. 

4. Discussion 

In this study, we analyzed temporal changes in the risk of CVD and 
asthma ED visits associated with short-term increases in PM2.5 concen-
trations in Los Angeles, California. This study focused on the period of 
2005–2016 during which comprehensive emissions control programs 
and economic drivers influenced air quality in the region. Similar to 
previous studies on short-term associations between PM2.5 and CVD 
(Kirrane et al., 2019) and asthma (Fan et al., 2016; Zheng et al., 2015) 
health events, a significantly increased risk of CVD and asthma ED visits 
associated with increases in PM2.5 concentrations were observed. More 
importantly, we also observed temporal variation in the relative risk 

with changes in PM2.5 concentrations and composition. 
For CVD ED visits, the relative risk estimates were significantly larger 

in the LATE (2013–2016) compared to the EARLY (2005–2008) period. 
The estimated 4-day exposure (lag 0–3) RR increased from 1.003 to 
1.020 and 8-day exposure (lag 0–7) RR increased from 0.991 to 1.033 
per 10 μg/m3 increase in PM2.5 concentration between the EARLY and 
LATE periods. For asthma ED visits, the largest RRs were found in the 
EARLY period (lag 0–3 RR = 1.018; lag 0–7 RR = 1.036) while the RRs 
were smaller in the following periods. In general, there were significant 
temporal trends in the risk of CVD and asthma ED visits associated with 
each 10 μg/m3 increase in PM2.5 concentration, and the trends were 
similar for different lag times (lags 0–3 and 0–7), age groups (ages 1–18, 
19–64, and 65+), and seasons (dry and wet). 

The temporal variation in PM2.5 relative risks could be a result of a 
number of factors, among which changes in PM2.5 composition could be 
an important one. With two-pollutant models, we investigated the hy-
pothesis that changes in PM2.5 relative risks were associated with 
changing fractions of individual PM2.5 components in PM2.5 total mass 
over time. We hypothesized that if the relative risk of CVD and asthma 
ED visits associated with a PM2.5 mixture without a certain PM2.5 
component remained about the same across time periods, then this 
would be support to show that the component in question was a 
contributor to the observed temporal variation in relative risk. However, 

Fig. 2. Relative risk estimates of CVD ED visits associated with each 10 μg/m3 increase in PM2.5 mass concentration of (a) all patients, (b) patients of ages 19–64, (c) 
patients of ages 65+, (d) dry season, and (e) wet season, shown as rate ratios (dots) and 95% confidence intervals (whiskers). 
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we found that the remaining PM2.5 mass without individual components 
still had temporal variation in relative risk as PM2.5 total mass, indi-
cating that the observed temporal variation might not be caused by any 
single component. Another possibility is that the observed temporal 
variation could result from changing fractions of a group of PM2.5 
components acting on different physiological mechanisms. To examine 
this hypothesis, a multi-pollutant model should be used to analyze the 
overall association between multiple PM2.5 components and a health 
outcome. However, due to the high correlations between different PM2.5 
components, multicollinearity could inflate the uncertainty of risk esti-
mates (Gibson et al., 2019). Subtracting multiple components from the 
total PM2.5 could be another way to assess the hypothesis, but as these 
components had distinct measurement uncertainties, the cumulative 
error in the generated remaining PM2.5 mass concentrations could make 
the risk estimates unreliable. Given these limitations, novel and robust 
statistical approaches for mixtures are needed to further analyze the 
combinations of PM2.5 components affecting PM2.5 relative risks (Taylor 
et al., 2016). 

Despite the fact that no single component was identified as an 
obvious contributor to the temporal variation in the risk of CVD and 
asthma ED visits associated with short-term increases in PM2.5 concen-
trations, the component-specific risk estimates still exhibited unique 
temporal patterns, some of which were different from the pattern of 

PM2.5 total mass. For example, the risk of CVD ED visits associated with 
increased OC concentrations had an increasing trend over time, which 
coincided with the increasing percentage of OC in PM2.5 total mass (OC 
was the only major component with an increasing percentage of PM2.5 
total mass over time). An increasing percentage of OC might include 
both reactive oxygen species and species with oxidative potential, which 
could potentially result in increased oxidative stress and exacerbation of 
cardiorespiratory diseases (Hopke et al., 2015). Previous studies con-
ducted in New York State also suggested that secondary OC could be a 
key component leading to temporal changes in the risk of adverse health 
outcomes associated with PM2.5 as oxidative stress is associated more 
with secondary organic aerosols (Croft et al., 2019; Hopke et al., 2019; 
Zhang et al., 2018). However, even though increased oxidative stress 
could be a plausible explanation for the larger risk of CVD ED visits 
associated with PM2.5 over time, it is difficult to explain the smaller risk 
of asthma ED visits over time. The inconsistent patterns in different 
health outcomes indicate that (1) it is possible that secondary OC may 
have different effects on CVD and asthma, (2) there could be other un-
measured factors leading to different risks of different health outcomes 
associated with OC, or (3) confounding from co-exposure to other pol-
lutants that impact CVD and asthma not fully captured by the model. 
Besides, due to the lack of source-specific measurements or predictions 
for secondary OC levels in Los Angeles, we were not able to fully 

Fig. 3. Relative risk estimates of asthma ED visits associated with each 10 μg/m3 increase in PM2.5 mass concentration of (a) all patients, (b) patients of ages 1–18, (c) 
patients of ages 19–64, (d) dry season, and (e) wet season, shown as rate ratios (dots) and 95% confidence intervals (whiskers). 
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examine its role in the observed temporal variation in relative risk in this 
study. Additional source apportionment research will be needed to 
further analyze secondary OC and its health effects. 

In southern California, sulfate could be a proxy of pollution mixtures 
related to the combustion of sulfur-containing fuel from motor vehicles, 
locomotives, ships, and off-road diesel equipment. Residual oil would be 
a prevalent sulfate source in this region especially at the early end of the 
study period when the ships started to be forced to switch to lower 
sulfur-containing fuel. Rich et al. (2019) found that residual oil particles 
and exhaust gas from spark-ignition and diesel vehicles were associated 
with increased rates of CVD hospitalizations over the next day. In this 
analysis, the risk of CVD ED visits associated with increased sulfate 
concentrations was large and significant in the EARLY period and 
decreased over time. Since these fuel combustion sources had been 
well-controlled due to the emissions control programs during the study 
period (Lurmann et al., 2015), it is expected that their adverse effects on 
CVD could be mitigated. However, sulfate was associated with asthma 
ED visits in a different manner, where the MIDDLE period (2009–2012) 
seemed to have the largest risk. Again, this inconsistency may be caused 
by different effects of sulfate on different health outcomes, other un-
measured time-variant factors, or confounding from co-exposure to 
uncaptured pollutants. 

The temporal trends in the risk estimates of both CVD and asthma ED 
visits associated with increased K concentrations were similar, where 
the largest risk was in the MIDDLE period. K has been extensively used as 
an indicator of biomass burning (Li et al., 2003), and the MIDDLE period 
had the lowest mean K concentration associated with fewer wildfire 
events in southern California. This pattern indicates that the risk asso-
ciated with emission sources containing K was largest when there were 
fewer wildfire events and lower K concentrations, which was not ex-
pected. Therefore, further research is needed to confirm this health 
association. 

Based on the observed evidence, we infer that other measured or 
unmeasured time-variant factors, in addition to changes in PM2.5 
composition, may also play an important role in the change in PM2.5 
relative risks over time. Asthma may be exacerbated by respiratory in-
fections such as influenza, which can cause inflammation of the airways 
(Glezen, 2006). Although we controlled for the ED visit counts for 
influenza in the asthma models, it was still possible that the control was 
insufficient due to potential under-detection and under-diagnosis of 
influenza (Hartman et al., 2018; Thompson et al., 2019). Exposure 
misclassification could be another potential factor. If the PM2.5 mea-
surements at the monitoring stations were a more representative of 
population exposures within the respective monitor-buffers in some 
periods than others, there would be a smaller estimation bias in these 
periods. However, we would expect such differential exposure misclas-
sification to affect the risk of both CVD and asthma ED visits and thus 
should not be a major factor influencing the observed differences in 
temporal patterns of two health outcomes. Other time-variant factors 
such as changes in population vulnerability (e.g., socioeconomic con-
ditions and underlying diseases) and health care accessibility could also 
be potential effect modifiers for short-term PM2.5-cardiorespiratory as-
sociations. A full investigation of these factors needs detailed 
community-level information, which warrants further research. 

While previous studies reported that PM2.5-cardiorespiratory disease 
associations may vary by region and sub-populations (Baxter et al., 
2013; Davis et al., 2011), this study provides further evidence that these 
associations may also vary by time, and changes in PM2.5 composition 
related to emissions control programs and economic changes could be an 
important driving factor. Apart from those already mentioned, there 
were several additional limitations in this study. First, the remaining 
PM2.5 mass concentrations generated by subtracting the mass of indi-
vidual components from PM2.5 total mass might have some uncertainty 
due to different measurement errors in different PM2.5 components. This 

Fig. 4. Relative risk estimates of CVD ED visits associated with each 10 μg/m3 increase in PM2.5 component concentration, controlling for the remaining PM2.5 mass, 
shown as rate ratios (dots) and 95% confidence intervals (whiskers). 
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uncertainty might bias the estimated health associations of both the 
component and the remaining PM2.5 parts. In addition, our exposure 
assignment relying on central air quality stations might result in expo-
sure misclassification, which was a combination of Berkson and classical 
error. The moving average method dealing with temporal sparsity in the 
component measurements was another possible source of exposure 
misclassification. While the simulations of PM2.5 composition generated 
by chemical transport models (CTMs) have complete spatiotemporal 
coverage, their large uncertainty (especially for trace components) 
resulted from inaccurate emission inventories and source profiles limits 
their use in epidemiological studies (Hu et al., 2014). Exposure 
misclassification could result in a bias toward the null and under-
estimated health associations (Zeger et al., 2000). The temporal sparsity 
in PM2.5 component data, especially for trace components, may be 
alleviated in the future with more advanced measurement techniques 
and more accurate CTMs. Finally, the diagnosis classification codes 
changed on October 1, 2015, from ICD-9 to ICD-10, might be an addi-
tional potential concern. However, all ICD-9 and ICD-10 codes were 
carefully reviewed to ensure consistency of disease groups, and any 
outcome misclassification should be minimal. 

5. Conclusions 

In this study, we observed temporal changes in the risk of CVD and 
asthma ED visits associated with short-term increases in PM2.5 mass and 

component concentrations. These temporal changes could be related to 
changes in the PM2.5 mixtures such as the increasing fraction of OC and 
the decreasing fraction of sulfate in PM2.5 total mass resulted from 
comprehensive emissions control programs and economic changes. 
However, the evidence at the single-component level was not clear. 
Other factors such as improvements in healthcare and differential 
exposure misclassification might also contribute to the temporal 
changes. The complex relationship between changes in the PM2.5 
mixture and different health outcomes warrants further validations in 
other geographical regions. 
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