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ABSTRACT: Low-cost air quality sensors are promising supplements to
regulatory monitors for PM2.5 exposure assessment. However, little has been
done to incorporate the low-cost sensor measurements in large-scale PM2.5
exposure modeling. We conducted spatially varying calibration and developed a
downweighting strategy to optimize the use of low-cost sensor data in PM2.5
estimation. In California, PurpleAir low-cost sensors were paired with air quality
system (AQS) regulatory stations, and calibration of the sensors was performed
by geographically weighted regression. The calibrated PurpleAir measurements
were then given lower weights according to their residual errors and fused with
AQS measurements into a random forest model to generate 1 km daily PM2.5
estimates. The calibration reduced PurpleAir’s systematic bias to ∼0 μg/m3 and
residual errors by 36%. Increased sensor bias was found to be associated with
higher temperature and humidity, as well as longer operating time. The weighted
prediction model outperformed the AQS-based prediction model with an improved random cross-validation (CV) R2 of 0.86, an
improved spatial CV R2 of 0.81, and a lower prediction error. The temporal CV R2 did not improve due to the temporal
discontinuity of PurpleAir. The inclusion of PurpleAir data allowed the predictions to better reflect PM2.5 spatial details and
hotspots.

1. INTRODUCTION
Particulate matter with aerodynamic diameter ≤ 2.5 μm
(PM2.5) is associated with a broad range of adverse health
outcomes1,2 and is a major contributor to the global burden of
disease.3 Precise and detailed ambient PM2.5 exposure
assessment is fundamental to reliably describing PM2.5−disease
relationships4−6 and developing PM2.5 pollution control
policies.7,8 Ambient PM2.5 exposure assessment has tradition-
ally relied on regulatory air quality monitoring stations such as
the U.S. Environmental Protection Agency (EPA) air quality
system (AQS) stations. Due to high instrumentation and
maintenance cost, regulatory monitoring is only performed at
limited locations for examining the compliance of air quality
standards. Given the spatial variability of PM2.5 at the kilometer
scale,9 sparse and uneven regulatory monitoring has a limited
ability to reflect PM2.5 pollution details,10 especially at remote
communities or when impacted by episodic events such as
wildfires.11,12 This paradigm is shifting with the development
of citizen science where many individuals voluntarily collect
large amounts of air quality data through low-cost air quality
sensors. These low-cost sensors typically cost < $2500 and
have desirable features such as flexibility of deployment and
ease of maintenance. Due to the lower costs, they can be
deployed more densely than government-operated regulatory
stations. Low-cost sensor data have the potential to provide
meaningful air quality information in a spatiotemporally more
frequent manner.

Since the majority of low-cost PM2.5 sensors are based on
the light-scattering principle,13 they tend to have a higher
uncertainty than reference-grade monitors. The uncertainty
may be caused by the measurement principle itself such as the
uncertainty in measured particle counts and the conversion
from particle counts to mass concentrations.14,15 The
manufacturing calibration, which uses manufactured aerosols
with different compositions and properties than those in the
ambient environment, is another source of uncertainty.13,16

The sensors may also experience quality degradation over
time17 and other logistical issues during deployment and
maintenance. Therefore, the data quality of low-cost sensors
varies with sampling locations and conditions.13,14,18 Previous
studies suggested that the pretest and calibration of low-cost
sensors should be conducted where the sensors are intended to
be deployed.13,14,18 Current laboratory and field calibrations of
low-cost sensors mainly focus on reducing their systematic
bias.19−21 Humidity and temperature were found to be two
important factors affecting the systematic bias,16,22 especially
when humidity is high.15,19,23 Multivariate regression models
with these factors as covariates have been widely used to
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calibrate the sensors against collocated reference-grade
monitors, which are able to significantly improve the accuracy
of the data but have a limited ability to reduce their residual
errors.19,24,25

Currently, there are two primary uses for low-cost PM2.5
sensors. First, they improve monitoring coverage in areas
where there is insufficient regulatory monitoring. For example,
Pope et al.26 identified spatial features and diurnal behavior of
PM pollution based on low-cost sensor data deployed at three
locations in Nairobi, Kenya, a city without long-term reference-
grade PM measurements. The applications of low-cost sensors
in regions with limited access to regulatory monitoring have
advanced local communities’ awareness and understanding of
air pollution.11,13,27 The second major use of low-cost sensors
is to assist with revealing the fine-scale variability of PM2.5,
especially in developed countries. In this case, low-cost sensor
data are used as a supplement to regulatory measurements in
physical or statistical models to fill in the spatiotemporal gaps
of PM2.5 concentrations. For example, Masiol et al.28

incorporated continuous PM concentrations from commer-
cially available low-cost sensors in land-use regression models
to derive hourly resolved PM predictions in Monroe County of
New York State. With the addition of calibrated low-cost
sensor data to the few regulatory measurements from existing
air quality stations in Imperial County of California, Bi et al.29

found that low-cost sensor data could improve the accuracy of
PM2.5 predictions with more reasonable spatial details.
Though it holds promise, there are two major limitations

with regard to using a low-cost sensor network to improve
PM2.5 pollution mapping and exposure assessment. First, due
to the significant cost of extensive field testing by trained
scientists,26 the side-by-side low-cost sensor calibration against
reference-grade monitors has mostly been confined in a small
region, e.g., at a city or county level. In other words, even
though low-cost sensors are individually cheap, the high cost of
field calibration makes their use at large spatial scales
expensive. Field calibration is more difficult for the low-cost

sensor networks established by third parties for other purposes.
Second, even though low-cost sensor data attain a relatively
low systematic bias after calibration, their precision is still not
comparable to that of reference-grade measurements. The
residual measurement errors of sensor data are difficult to be
reduced by current multivariate calibration models.29 When
the calibrated sensor data are treated as ground truth, their
residual errors may still significantly influence the reliability of
their downstream applications such as hotspot detection,
source identification, and epidemiologic analysis.28 These
limitations also apply to other citizen science programs with
large amounts of low-quality volunteer-generated data, such as
the personal weather data collected by citizens across the U.S.
for the Citizen Weather Observer Program.10

In this study, we proposed a two-step approach to address
the aforementioned limitations and optimize the use of low-
cost sensor measurements in a spatially extensive, high-
resolution PM2.5 exposure assessment. Using a commercial
low-cost sensor network as an example, we first conducted a
large-scale spatially varying calibration for low-cost PM2.5 data
against existing reference-grade measurements. A downweight-
ing process was then conducted in the prediction stage to
reduce the negative impacts of the residual errors of the
calibrated sensor data. Our framework is designed to integrate
low-cost sensor data with regulatory monitoring data and other
sources of information such as satellite, meteorological, and
land-use data to improve the high-resolution PM2.5 exposure
assessment. This framework could also be informative to other
citizen science programs to improve the accuracy of volunteer-
generated data.

2. DATA AND METHODS
2.1. Study Domain and Modeling Strategy. California

is the most populous U.S. state with over 39 million residents
and the one with the most severe PM pollution, especially in
metropolitan areas and the Central Valley.30 California has a
relatively dense regulatory air quality monitoring network and

Figure 1. (A) Study domain, California, with the locations of AQS (red), PurpleAir (blue), and paired AQS/PurpleAir monitors (green). The
latitude/longitude ranges of California are [32°30′N, 42°N] and [114°8′W, 124°24′W]. (B) Workflow of the two-step approach including spatially
varying PurpleAir calibration and weighted PM2.5 prediction.
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dense low-cost sensors for tracking local air quality. By the end
of 2018, there were 157 AQS stations providing PM2.5
measurements and 2090 outdoor sensors from PurpleAir, a
commercial low-cost sensor network, providing subhourly
PM2.5 measurements within the state. Figure 1A shows our
study domain with the locations of AQS and PurpleAir
monitors. To take advantage of the dense ground monitors and
high-resolution satellite aerosol data, we defined a grid at a 1
km resolution for PM2.5 modeling. The entire study domain
consists of 493 561 grid cells. A brief workflow of our two-step
modeling approach is shown in Figure 1B.
2.2. Data. 2.2.1. PM2.5 Measurements. PurpleAir is a

citizen-based, real-time low-cost PM sensor network started in
2015 (https://www.purpleair.com/). By the end of 2018,
PurpleAir had almost 7000 sensors worldwide with a growing
rate of ∼30 sensors per day. PurpleAir provides minute-level
indoor/outdoor measurement for PM2.5 and other environ-
mental parameters (humidity, barometric pressure, and
temperature). We obtained hourly PM2.5 measurements from
2090 outdoor PurpleAir sensors in 2018 in California (N =
5 842 404). Quality control was conducted for these measure-
ments to minimize the outliers (Section 1, Supporting
Information). The raw PurpleAir PM2.5 measurements
appeared to bias substantially high against reference-grade
measurements (Section 2, Supporting Information).
Reference-grade PM measurements were obtained from the

EPA AQS regulatory monitoring network (https://www.epa.
gov/aqs). In 2018, 157 AQS stations provided 50 870 daily
PM2.5 measurements in California, and 109 of them provided
499 940 hourly PM2.5 measurements. The hourly PM2.5
measurements from the AQS stations near the PurpleAir
monitors were used for PurpleAir evaluation and calibration.
Daily PM10 measurements were also obtained, which were
utilized to generate an ancillary predictor, the PM2.5/PM10
ratio. This predictor is a continuous surface interpolated from
the PM2.5/PM10 ratio scatters at the locations of AQS stations,
representing the distribution of the percentages of PM2.5 in
PM10 in the study domain. The interpolation was performed by
ordinary kriging with month-specific variograms fitted in a
spherical model. The PM2.5/PM10 ratio was shown to be an
important predictor of ground-level PM2.5 in California due to
relatively high coarse-particle loadings.29

2.2.2. Ancillary Data. Aerosol optical depth (AOD) is the
integral of aerosol extinction of the solar beam along the entire
vertical atmospheric column, which is an important predictor
of ground-level PM2.5.

9,31 We adopted the satellite AOD
retrievals from the moderate resolution imaging spectroradi-
ometer (MODIS) multiangle implementation of atmospheric
correction (MAIAC) product (MCD19A2, https://lpdaac.
usgs.gov/products/mcd19a2v006/).32 MODIS aerosol retriev-
als have 40−50% missing values on average in California due
to cloud cover.33 Therefore, AOD gap-filling was performed by
following Bi et al.,9 in which daily-level AOD prediction
models were built with satellite-observed cloud fractions and
AOD-related meteorological parameters (humidity, visibility,
downward shortwave radiation, and wind speed and direction)
to derive complete daily AOD surfaces.
Meteorological parameters were obtained from the North

American Regional Reanalysis (http://www.emc.ncep.noaa.
gov/) at a 32 kilometer (∼0.3°) resolution34 and the North
American Land Data Assimilation System (https://ldas.gsfc.
nasa.gov/) at a 0.125° resolution.35 The meteorological
parameters used in PM2.5 modeling include visibility, 2 meter

air temperature and specific humidity, planetary boundary
layer height, 10 meter zonal and meridional wind speeds,
shortwave/longwave radiation flux downwards, aerodynamic
conductance, convective available potential energy, convective
precipitation, and total precipitation. These reanalysis data
were aggregated from subdaily to daily to match the PM2.5

data.
The land-use and demographic parameters were obtained

from (1) the 2011 National Land Cover Database at a 30
meter resolution (https://www.mrlc.gov/), (2) the Advanced
Spaceborne Thermal Emission and Reflection Radiometer
Global Digital Elevation at a 1 arc-second resolution (https://
asterweb.jpl.nasa.gov/), (3) the LandScan ambient population
in 2017 at a 900 meter resolution (https://landscan.ornl.gov/
), (4) the Normalized Difference Vegetation Index (NDVI)
from MODIS vegetation indices at a 500 meter resolution
(https://modis.gsfc.nasa.gov/), (5) the distances to the
nearest primary and secondary roads computed from the
U.S. Census TIGER/Line Shapefiles (https://www.census.
gov/), and (6) active fire distributions computed from satellite-
retrieved active fire spots (https://firms.modaps.eosdis.nasa.
gov).

2.3. PurpleAir PM2.5 Calibration and Weighted PM2.5

Modeling. 2.3.1. Spatially Varying PurpleAir PM2.5 Calibra-
tion. The PurpleAir measurements were calibrated against the
“gold-standard” AQS measurements. Since both AQS and
PurpleAir were existing networks, there were very few strictly
collocated AQS/PurpleAir sites in California during the time
this analysis was conducted. Instead, we matched a PurpleAir
sensor to its nearest AQS station within a 500 m radius so that
each AQS/PurpleAir pair was within a 1 km modeling grid cell.
The calibration was conducted at the level of single PurpleAir
sensors, i.e., the measurements from multiple PurpleAir sensors
around the same AQS station were treated separately rather
than aggregated together in calibration. A sensitivity analysis
indicated that the selected AQS/PurpleAir pairs were robust
within a range between 100 and 1000 m without a significant
change in the number of pairs. During the study period, 54
PurpleAir sensors were matched to 26 AQS stations, providing
128 777 paired hourly PM2.5 measurements.
Given the spatially varying agreement between paired AQS

and PurpleAir measurements, geographically weighted regres-
sion (GWR) was conducted for the PurpleAir calibration.
GWR allows smoothed local relationships between AQS and
PurpleAir measurements. Temperature and relative humidity
(RH) were used as covariates of the GWR calibration model
because these parameters are associated with the data quality
of low-cost sensors.14,19 In addition, low-cost sensors may
experience quality degradation over time;17,36,37 thereby, the
total operating time of a sensor (the duration between the
measurement time and the installation time) was used to
adjust the effect of sensor aging. Finally, the sensor uptime (the
time during which a sensor is in consecutive operation from
the last boot time) was used to adjust the potential impact of
sensor’s operational stability on data quality. A linear
specification was used to describe the relationship between
the bias of PurpleAir measurements and four covariates
(temperature, RH, operating time, and uptime) (see Section
3 of the Supporting Information for the nonlinearity analysis of
PurpleAir bias). The GWR model can be expressed as
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where β(ui,vi) indicates the vector of the location-specific
parameter estimates, and (ui,vi) represents the geographic
coordinates of location i. AQS PM2.5i and PurpleAir PM2.5i are
the paired hourly PM2.5 measurements at location i. Ti, RHi,
optimei, and uptimei represent temperature, relative humidity,
operating time, and uptime of the PurpleAir sensor at location
i, respectively. The error term ϵi is normally distributed with a
mean of zero and an overall error variance τ2. The optimal
hyperparameters of GWR, i.e., the kernel and bandwidth, were
chosen based on the corrected Akaike information criterion. In
this analysis, the optimal kernel was a Gaussian kernel, and the
optimal bandwidth was 5401 nearest-neighboring points. All
covariates were statistically significant at an α level of 0.05 in
the GWR calibration model. The GWR was fitted using the R
package “GWmodel” version 2.0-7.38 To examine the impact of
the number of collocated AQS stations for PurpleAir
calibration, a sensitivity analysis was conducted with subsets
of randomly selected collocated stations (Table S1).
Besides the calibration, another generalized additive model

(GAM) was built to quantify the impacts of temperature, RH,
operating time, and uptime on the bias of PurpleAir
measurements (eq 2). This model describes the relationships
of the absolute bias of PurpleAir measurements (against paired
AQS measurements) and the four covariates. The model can
be expressed as

α

| − |

= + + + + + ϵs T s s

AQS PM PurpleAir PM

( ) (RH ) (optime ) s(uptime )

i i

i i i i i

2.5 2.5

0

(2)

where i represents a specific paired record, and s() indicates
the smooth function with degrees of freedom of 2 to minimize
the random fluctuation in the estimated relationships.
2.3.2. Weighted PM2.5 Modeling with AQS and PurpleAir

Data. After calibration, AQS and PurpleAir measurements
were aggregated to daily, 1 km averages for PM2.5 modeling.
For the 1 km grid cells containing both AQS and PurpleAir
measurements, only the AQS measurements were selected to
better represent the pollution levels. A weighted random forest
(RF) model was adopted to generate daily, 1 km PM2.5
predictions based on the aggregated daily measurements.
Random forests are an ensemble learning method combining
the predictions from a multitude of decision trees.39 RF
provides variable importance measures to explain the relative
importance and contribution of each predictor. The RF
algorithm has been increasingly applied to predicting ground
PM2.5 levels.9,40 An advantage of using RF in this analysis is
that it can assign an individual weight to each dependent
observation so that the high-quality AQS measurements could
have a higher weight than the PurpleAir measurements.41 An
observation with a higher weight will be selected with a higher
probability in the samples for building decision trees, therefore
having a greater influence on the predictions.
We followed Hu et al.40 and Bi et al.9 to perform variable

selection and model evaluation based on RF variable
importance and random cross-validation (CV). The independ-

ent variables used in the prediction models are shown in Table
1. Two major RF hyperparameters, the number of decision

trees (ntree) and the number of predictors randomly tried at
each split (mtry), were tuned based on CV performance. In this
analysis, the optimal values of ntree and mtry were 500 and 5,
respectively. Apart from the RF model with individual weights
(refer to as “the weighted model” hereinafter), two reference
models were built: one based solely on the AQS measurements
(a.k.a. the AQS-based model) and another based on the AQS
and PurpleAir measurements without weighting (a.k.a. the
nonweighted model). We used 10-fold random, spatial, and
temporal CV to evaluate these models. The 10-fold spatial CV
procedure creates validation sets according to the locations of
the measurements (i.e., dropping 10% of all locations), and the
temporal CV creates validation sets according to Julian days.
R2 and root-mean-square prediction error (RMSPE) were the
major gauging metrics of CV. It is worth noting that CV was
only performed on AQS measurements not used in calibrating
PurpleAir to ensure the CV only evaluates out-of-sample
model prediction performance. This avoids the issue that
calibrated PurpleAir measurements will likely share similar
features of matched AQS monitors.
Although the systematic bias of PurpleAir data could be

reduced by calibration, these measurements still had
substantial residual errors, which might adversely impact the
accuracy of PM2.5 predictions. We assigned lower weights to
PurpleAir measurements in the prediction process according to
their estimated residual errors to mitigate such influences.
Similar to the bias, we assumed that the residual errors in
calibrated PurpleAir measurements would vary under different
environmental conditions. Accordingly, the study domain was
partitioned into several subdomains based on selected variables
using hierarchical agglomerative clustering (HAC).42 The
domain partitioning aimed to obtain distinct PM2.5 pollution
conditions under which the PurpleAir residual errors would
vary. The selected variables were the top 10 predictors with the
highest importance values in the AQS-based prediction model
(Table S2). HAC performs “bottom-up” clustering, i.e., each

Table 1. Independent Variables Used in the PM2.5
Prediction Models (s: Spatially Varying; t: Temporally
Varying)

prediction variables

MAIAC AOD ancillary variables
gap-filled Terra AOD(s,t) PM2.5/PM10 ratio(s,t)
gap-filled Aqua AOD(s,t) day of year(t)

month(t)
land-use variables meteorological variables

elevation(s) visibility(s,t)
population(s) 2 meter air temperature(s,t)
NDVI(s,t) 2 meter specific humidity(s,t)
nearest distance to roads(s) planetary boundary layer height(s,t)
percentage of shrublands(s) longwave radiation flux downwards(s,t)
percentage of herbaceous areas(s) shortwave radiation flux downwards(s,t)
percentage of developed areas(s) 10 meter zonal wind speed(s,t)
percentage of cultivated areas(s) 10 meter meridional wind speed (s,t)

percentage of forests(s) aerodynamic conductance(s,t)
percentage of water bodies(s) convective available potential energy(s,t)
percentage of wetlands(s) convective precipitation(s,t)
percentage of barren lands(s) total precipitation(s,t)
active fire distribution(s,t)
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unclassified item starts in its own cluster and the two most
similar items are merged into a new cluster. This step is
iterated until all items are aggregated into a single cluster to
form a hierarchical structure. Hierarchical clustering has no
hidden assumptions about the distribution of underlying data,
which was suitable in our case as we had little a priori
understanding of the 10-variable feature space. The number of
clusters (K) was determined with the R package “NbClust”.43

NbClust provides 30 indices for determining K, and the
optimal K can be decided through the majority vote of these
indices. The optimal K of our feature space was determined to
be 3. Month-specific clustering was conducted as a sensitivity
test, which showed that our three-cluster partitioning was
robust over time.
Weights assigned to calibrated PurpleAir measurements

reflected their relative importance to AQS measurements in
the PM2.5 prediction process. All calibrated PurpleAir measure-
ments in each subdomain were given the same weight
determined using a three-parameter formula (eq 3). First,
the mean PurpleAir residual variance in each subdomain (τj

2),
measured by the variance of the differences between paired
PurpleAir and AQS measurements, represents the overall
PurpleAir residual error in the subdomain. Secondly, the error
associated with the prediction model structure (σ2) was
estimated as the CV mean-squared prediction error (MSPE) of
the AQS-based model. σ2 was the same across different
subdomains. The proportion of the model structure error (σ2)

in the total possible variance (σ2 + τj
2) served as the upper

bound of the weight. Finally, in addition to the uncertainty
related to the low-cost sensing technology, other factors such
as the lack of a consistent siting plan for spatial
representativeness can also influence the quality of PurpleAir
measurements. To summarize the impact of these unquantifi-
able circumstances, we included a data-driven scale factor (ρ)
with a range (0, 1) in the weighting formula. Its value was
tuned based on CV RMSPE and was determined to be 0.23 in
this analysis (Section 4, Supporting Information). Intuitively,
as the overall residual error and unquantifiable uncertainty in
calibrated PurpleAir measurements decrease, the weight of the
PurpleAir measurements increases within the range (0, 1) in
the prediction model. As a reference, the weight of the gold-
standard AQS measurements was fixed to 1.

ρ σ
σ τ

ρ= ·
+

< < < <w w0 1 0 1j
j

j

2

2 2
(3)

3. RESULTS
3.1. PurpleAir PM2.5 Calibration. 3.1.1. Evaluation of

Uncalibrated PurpleAir Measurements. A linear regression of
uncalibrated PurpleAir measurements against AQS had an R2

of 0.74 and a slope of 0.61. This R2 was slightly lower than the
R2 values reported by previous studies.44,45 Our relaxed pairing
strategy between AQS and PurpleAir might lead to this lower
agreement. Figure 2A shows that uncalibrated PurpleAir PM2.5

Figure 2. (A) Time series of paired AQS (red) and PurpleAir (blue) hourly measurements with their mean values (dashed lines). The paired
measurements were only available from January to August of 2018. (B) Box plots of the differences between paired AQS and PurpleAir hourly
measurements (PurpleAir minus AQS) at the locations of 21 AQS stations with more than 70 paired hourly PM2.5 measurements (in the ascending
order of mean distance).
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measurements tracked well with AQS in time but detected
more spikes and biased high against AQS by 1.9 μg/m3. These
spikes might be caused by high-level local pollution in the
microenvironments near the PurpleAir sensors such as
cigarette smoke, barbecues, fireplaces, and idling trucks25 as
most PurpleAir sensors have been installed in residential areas
by citizens.
When evaluating PurpleAir sensors at the locations of 21

AQS stations with more than 70 paired PM2.5 measurements, a
clear variation of the AQS/PurpleAir agreement was observed.
Figure 2B shows the box plots of the differences between
PurpleAir and AQS data at each AQS site. The site-specific R2

between PurpleAir and AQS ranged from 0.03 to 0.93. The
site-specific slope also had a large variation from 0.06 to 1.23.
These substantial variations emphasize the necessity of
calibrating and assigning lower weights to PurpleAir measure-
ments in a spatially varying manner. Figure 2B also shows that
the variation of the AQS/PurpleAir agreement was not
correlated with their actual distance (correlation coefficient <
0.001), suggesting that 500 m was a reasonable distance for
pairing AQS and PurpleAir. As shown in Figure 2B, some
paired AQS/PurpleAir measurements had large differences
(>50 μg/m3). No temporal patterns among these large
differences were found. High-level local pollution in the
microenvironments of PurpleAir sensors is believed to be a
potential reason for these occasional inconsistencies.
3.1.2. Spatially Varying PurpleAir PM2.5 Calibration. The

GWR slopes of PurpleAir (β1 in eq 1) averaged 0.64 with an
interquartile range of 0.02. The largest slope was 0.67 near the
U.S.−Mexico border in Southern California, and the smallest
was 0.62 near the coast of Northern California (Figure S1).
Although the individual slopes of the AQS/PurpleAir pairs
varied significantly across the domain, the calibration slopes
had a narrower range because the GWR model fitted the paired
measurements in a wider area at each location and other
covariates also worked to remove much of the variation. This is
a conservative strategy for mitigating the influence of few
paired measurements with extreme coefficients on the
calibration model. After calibration, the overall systematic
bias of PurpleAir decreased from 1.9 to ∼0 μg/m3. The overall
PurpleAir residual error was also reduced to some degree,
reflected in a decreased standard deviation of the AQS/
PurpleAir differences from 8.18 to 5.20 μg/m3 (i.e., a 36%
decrease). The calibration model had a 10-fold CV R2 of 0.78,
which is higher than the R2 of 0.74 between AQS and
uncalibrated PurpleAir data, again indicating the improvement
of the overall precision of PurpleAir data. Table S1 shows the
results of the sensitivity analysis based on randomly selected
subsets of collocated AQS stations. When keeping 90% of the
collocated AQS stations (23 stations), the calibrated PurpleAir
data only had negligible changes. However, when keeping
∼80% of the collocated stations (20 stations), although the
hourly level mean absolute difference between the fully
calibrated data and the calibrated data based on the subset
of collocated stations was still minor (0.35 μg/m3), the
maximum absolute difference started becoming significant
(>10 μg/m3).
3.1.3. PurpleAir Sensor Bias and Influential Factors. Figure

3 shows the GAM-fitted relationships of the AQS/PurpleAir
absolute differences and temperature, RH, operating time, and
uptime. The 95% confidence intervals (CIs) of the relation-
ships are shown as the shaded area. In the paired data,
temperatures ranged from −1.8 to 52.6 °C with an average of

22.4°C. Temperature was associated with the smallest absolute
bias at ∼20°C after adjusting for other covariates (Figure 3A).
The bias significantly increased when the temperature became
higher. At 50°C, the absolute bias was ∼1.5 times (∼2.5 μg/
m3) higher than at 20°C. In contrast, a lower temperature was
only associated with a minor increase of bias. RH measures
ranged from 0 to 90.1% with an average of 38.8%. RH was
positively associated with the absolute bias after adjusting for
other covariates (Figure 3B). Specifically, the absolute bias was
relatively stable at RH < 25% but increased exponentially at
RH > 25%. At 90%, the absolute bias was ∼3 times (∼9 μg/
m3) higher than at 25%. Operating times ranged from 1 to 690
days with an average of 198 days. After controlling for
temperature, RH, and uptime, the absolute bias showed a U-
curve with a minimum value at ∼280 days (∼9 months)
(Figure 3C). As the operating time became shorter or longer,
the bias increased, and the rate of increase was faster for a
longer operating time. A sensor with an operating time of 700
days (∼23 months) had a ∼2 times (∼5 μg/m3) higher
absolute bias than a sensor with an operating time of 280 days.
Sensor uptimes ranged from 1 to 67 964 min (∼47 days) with
an average of 4881 min (∼3.5 days). After adjusting for
temperature, RH, and operating time, the absolute bias peaked
at ∼23 000 min (∼16 days) and became smaller when the
uptime was shorter or longer (Figure 3D). However, the
derived relationship about the uptime had a large uncertainty.

3.2. Weighted PM2.5 Modeling. 3.2.1. Residual Errors
and Weights. The clustered subdomains correspond well with
the topographic, meteorological, and land-cover features in
California (Figure S2): (1) the first subdomain consisting of
agricultural, humid, and developed areas where most of the
population resides, (2) the second subdomain consisting of
mountainous areas such as the Sierra Nevada, and (3) the third
subdomain mainly consisting of the arid areas in the state. The
estimated mean residual variances (τj

2) and the corresponding
weights of PurpleAir (wj) in the subdomains are summarized

Figure 3. GAM-fitted relationships with 95% confidence intervals
between the absolute differences of paired AQS/PurpleAir hourly
measurements and (A) temperature, (B) RH, (C) sensor operating
time, and (D) sensor uptime after controlling for other three factors.
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in Table 2. The residual variances were distinct in different
subdomains, varying from 11.2 to 50.0. The variance was

smallest in arid areas and largest in mountainous areas and was
modest in agricultural/developed areas. The domain-specific
weights of PurpleAir ranged from 0.10 to 0.17.
3.2.2. Modeling Performance and PM2.5 Predictions. Table

3 shows the CV performance of the prediction models. Figure

S3 shows the CV scatter plots of the models, indicating that
the predictions from all models were slightly underestimated
against AQS measurements with slopes of ∼1.1. The
underestimation is mainly because the RF algorithm is
conservative for extreme values, and in this analysis, extremely
high PM2.5 pollution levels tended to be predicted as lower
values. The spatial and temporal CV of the AQS-based model
had baseline R2 values of 0.75 and 0.77, respectively, which
were lower than its random CV R2 of 0.83. The lower spatial/
temporal R2 values reflect slightly decreased abilities to
extrapolate the PM2.5 estimates from the spatial/temporal
ranges of the training data to the entire domain/time span.
The contribution of PurpleAir data is shown by the higher
random CV R2 values of both nonweighted and weighted

models than that of the AQS-based model. The spatial CV R2

values of both nonweighted and weighted models also
increased from 0.75 to 0.81. This change indicates that
PurpleAir measurements captured PM2.5 pollution in more
microenvironments despite the network’s lack of a coordinated
siting strategy. The temporal CV R2 of the nonweighted model
decreased from the baseline value of 0.77 to 0.75, possibly due
to the lack of sampling continuity of PurpleAir. Unlike AQS,
most of the PurpleAir sensors were newly installed during the
study period and maintained by untrained citizens; so, the
operations were often intermittent. This lack of sampling
continuity could render the measurements less representative
in time. The weighted model had a spatial CV R2 higher than
the baseline value and a temporal CV R2 comparable to the
baseline value. The model also had the best random CV R2 of
0.86 and the lowest RMSPE of 5.62 μg/m3. These results
indicate that the weighting strategy could not only result in
higher spatial predictability provided by dense PurpleAir
sensors but also maintain high temporal predictability provided
by continuous AQS monitors.
The PM2.5 prediction surfaces illustrate the contribution of

PurpleAir and the weighting strategy from a different angle.
Figure 4 shows the annual mean PM2.5 distributions generated
from the AQS-based and weighted models, as well as their
differences. The AQS-based model had an averaged PM2.5
prediction of 9.4 μg/m3, and the weighted model had an
average of 10.0 μg/m3. The weighted predictions were higher
than the AQS-based predictions in almost all areas except for
the San Francisco Bay Area, Imperial Valley, and the desert
mountain ranges in Southeastern California. The higher
predictions were mainly caused by higher calibrated PurpleAir
measurements. During the study period, the daily calibrated
PurpleAir PM2.5 measurements had an average of 12.1 μg/m3,
higher than the daily AQS measurements averaged 11.5 μg/m3.
Figure 4C shows some hotspots where the weighted
predictions were considerably higher than the AQS-based
predictions. These hotspots appear to spatiotemporally
coincide with the California wildfires. The black points in
Figure 4C label the locations of the four-most destructive
California wildfires in 2018 (i.e., Carr Fire, Camp Fire,
Mendocino Complex Fire, and Ferguson Fire). The extreme
weather conditions during the wildfire events, especially high
air temperatures, might influence the quality of PurpleAir
sensors. However, when checking the temperature measure-
ments from the PurpleAir sensors near the wildfires, we found

Table 2. Numbers of Paired AQS/PurpleAir Hourly
Measurements, Mean PurpleAir Residual Variances, and
PurpleAir Weights in Three Clustered Subdomainsa

subdomain (j) N variance (τj
2) weight (wj)

agricultural 118 912 27.22 0.13
mountainous 3531 50.00 0.10
arid 6334 11.21 0.17

aThe weights were calculated based on an AQS-based CV MSPE (σ2)
of 33.4 and a scale factor (ρ) of 0.23.

Table 3. Cross-Validation Performance of Three Prediction
Modelsa

model
random CV

R2
spatial CV

R2
temporal
CV R2

CV RMSPE
(μg/m3)

AQS-based 0.83 0.75 0.77 6.04
nonweighted 0.85 0.81 0.75 5.95
weighted 0.86 0.81 0.77 5.62

aCV was only performed on AQS measurements not used in
calibrating PurpleAir (N = 32 981).

Figure 4. Annual mean PM2.5 distributions for the year 2018 derived by (A) the AQS-based model and (B) the weighted model. (C) Annual mean
PM2.5 differences between the weighted and AQS-based models (weighted minus AQS-based) with the locations of the four-most destructive
wildfires in California in 2018.
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that the maximum measurement, 50.3°C, was still within the
temperature range of the calibration model (Figure 3). This
finding indicates that the PurpleAir measurements near these
wildfires were well calibrated and the observed PM2.5 hotspots
are not likely caused by highly biased PurpleAir measurements
due to high temperatures. As shown in Figure S4, we infer that
the density of PurpleAir sensors in the study domain, allowing
them to measure such episodic and high-level pollution events,
could be one of the reasons for their ability to better reflect the
hotspots. The utility of low-cost sensors under more extreme
conditions still warrants further research. Figure S5 shows that
the nonweighted predictions were higher in most of the study
domain than the weighted predictions. However, the larger
impact of PurpleAir residual errors on the nonweighted model
reduced the credibility of its predictions. As PurpleAir
measurements were aggregated to daily-level data in this
analysis due to the difficulty of current PM2.5 models
generating predictions at a finer temporal scale, the
contribution of high temporal frequency of PurpleAir data
on PM2.5 predictions warrants further research with improved
prediction models.

4. DISCUSSION
In this study, we conducted a spatially varying calibration and
developed a downweighting strategy to integrate low-cost
sensor data into high-resolution PM2.5 modeling in California.
To the best of our knowledge, this is the first time such a
framework has been proposed to enable PM2.5 prediction
models to take advantage of a large volume of low-cost sensor
measurements while minimizing the adverse influence of their
uncertainties.
Strict side-by-side collocation against reference-grade

monitors has been reported in many field calibration studies
of low-cost sensors.15,19,20,25 Although it ensures the robust-
ness of calibration, a number of limitations prevent larger-scale
implementation of this method. Because side-by-side colloca-
tion in a field measurement campaign is costly and time
consuming, it is usually restricted to a relatively small area such
as a city20,21 or a county.19 Calibration coefficients fitted in a
small area are difficult to apply in other regions as the low-cost
sensor bias may vary under different environmental con-
ditions.13,14,18 More importantly, strict collocation is difficult
when both low-cost sensor and regulatory networks are already
established. Instead, we tested a less stringent collocation
strategy by matching a PurpleAir sensor to its nearest AQS
station within a radius of 500 m so that each AQS/PurpleAir
pair was within a 1 km modeling grid cell. The reasonability of
our collocation strategy was bolstered by the fact that an
agreement between AQS and PurpleAir data was not related to
the actual distance between monitors within 500 m.
Furthermore, it allowed for sufficient collocated samples to
conduct the calibration. As the AQS/PurpleAir agreement was
heterogeneous across the domain where the bias of PurpleAir
data was lower near the coastal area of Northern California and
higher near the U.S.−Mexico border, the PurpleAir calibration
was performed with a GWR model in a spatially varying
manner. The calibration reduced the overall systematic bias of
PurpleAir data from 1.9 to ∼0 μg/m3. The overall residual
error of the measurements was also reduced by 36%. Results
from the sensitivity analysis examining a reduced set of
collocated AQS stations (Table S1) suggest that for a region
the size of California, at least ∼20 well-distributed, continuous
reference-grade monitors (capable of providing hourly PM2.5

measurements) are needed to effectively calibrate hourly level
PurpleAir measurements. Thus, our recommended reference-
grade monitor density is ∼5 stations per 100 000 km2. By the
end of 2018, 37 states in the contiguous United States
(CONUS) other than California had a density of continuous
AQS stations greater than 5 per 100 000 km2 (Table S3).
Accordingly, the proposed PurpleAir calibration framework
may potentially be generalized to the majority of CONUS
states without deploying new reference-grade air quality
stations. In fact, for the states with a lower network density,
an effective calibration could still be conducted by grouping
with surrounding states.
Due to the lack of detailed operational conditions of the

PurpleAir sensors, assigning site-specific weights was unreal-
istic. Instead, we clustered these sensors into groups and
assigned each group a single weight. We demonstrated a
downweighting approach to minimize the influences of residual
errors and other factors affecting low-cost sensor measure-
ments. The population-level downweighting formula consists
of two parts: an explicit error variance ratio and a data-driven
scale factor (ρ). The error variance ratio accounts for the
proportion of the mean PurpleAir residual variance in the total
possible error variance of the model. As the residual error
becomes smaller, this ratio becomes larger and so does the
weight. The scale factor ρ was used as a proxy of the negative
impacts of implicit factors of low-cost sensors on modeling
performance, such as sampling discontinuity and less
representative sensor siting.46 Since the impacts of these
implicit factors were unquantifiable, the optimal ρ was
determined by our model-fitting data within a range from 0
to 1. It is worth noting that for a set of measurements with an
overall quality close to the gold-standard measurements, ρ may
approach 1 (Section 4, Supporting Information). In this
analysis, the population-level weights were between 0.10 and
0.17, indicating that even though the bias of PurpleAir
measurements could be eliminated by a statistical calibration,
the contribution of PurpleAir measurements was still no more
than 20% of that of AQS measurements in achieving the best
model-predicting performance of daily PM2.5 concentrations.
Compared to the nonweighted prediction model, the weighted
prediction model had a higher random CV R2 of 0.86, a higher
temporal CV R2 of 0.81, and a lower RMSPE, indicating that
the weighting strategy was able to compensate the loss of
predictability caused by the PurpleAir residual errors. Through
this study and its pilot study conducted in a region with
insufficient AQS stations,29 we found that the improvement of
statistical metrics, such as the increase of CV R2 values, can
only partly reflect the contribution of low-cost sensors to the
quality of PM2.5 prediction, especially when CV is based solely
on reference-grade measurements as in this analysis. In the
absence of high-quality and high-coverage measurements, we
believe that examining the spatial distribution of PM2.5
predictions (Figures 4 and S5) is an important complement
to CV metrics to evaluate low-cost sensor data. As shown in
this analysis, despite the small improvement in CV metrics,
small-scale pollution features are able to be well captured by
low-cost sensors. Another possible way to mitigate the
influence of low-cost sensor measurement errors on PM2.5
modeling is interpolating these discrete measurements into
continuous surfaces and treating the surfaces as an
independent variable in the model. We think our weighting
strategy is advantageous because incorporating low-cost sensor
measurements into the dependent variable will lead to a
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significantly larger training sample capable of providing
considerably more detailed spatiotemporal information about
the pollutant. In this analysis, PurpleAir provided ∼5 times
more training samples than AQS, and these samples could help
improve the model predictability and better measure pollution
hotspots.
The dense and spatially extensive low-cost sensor measure-

ments allowed us to analyze the potential factors related to the
bias and residual error of low-cost sensor measurements.
Increased temperature and RH were associated with a near-
exponentially increased PurpleAir data bias. The observed
influences of high temperature/humidity on low-cost sensor
bias may be related to the issues in electronic circuits and the
hygroscopic growth of fine particulates.23,47,48 The sensor
operating time was an influential factor of the bias as well,
where a PurpleAir sensor with an operating time of 2 years
tended to have a ∼2 times higher bias than a sensor with an
operating time of 9 months. The increased bias over time may
reflect the aging effect of sensors.17,36,37 A shorter operating
time than 9 months was also associated with a slightly
increased sensor bias, suggesting a “break-in” or “warm-up”
period of the sensor. The mechanism of the break-in warrants
further investigation. A longer sensor uptime was, in general,
associated with a lower sensor bias, indicating that stable
operation would generally result in better data quality.
However, this relationship had a large degree of uncertainty,
probably because the sensor’s operational stability is associated
with many factors other than the sensor itself, such as the
reliability of power supply. In terms of the residual error, the
mountainous areas had the highest estimated PurpleAir
residual error, while the arid areas had the lowest. This
difference indicates that (1) humidity may still play a role in
the residual errors of low-cost sensor data even after
controlling it in the calibration stage and (2) the change of
PM2.5 composition in different land-use types may differentially
affect the accuracy of the formula the manufacturer of
PurpleAir used to convert light scatter to mass concentration.
Given the limited information about the sensors we were able
to collect, the factors other than temperature, humidity, sensor
operating time, and uptime could not be analyzed. More in-
depth analyses on the influential factors of sensor data quality
are needed but they are beyond the scope of this study.
Overall, a two-step approach, i.e., spatially varying

calibration and downweighting modeling, was developed to
combine low-cost sensor data with regulatory measurements to
improve the quality of high-resolution spatiotemporal PM2.5
modeling. The proposed approach was able to mitigate the
negative impact of the high noises in low-cost sensor
measurements on PM2.5 prediction accuracy. Dense low-cost
sensor measurements in the study domain also showed their
potential to help the prediction model better reflect PM2.5
hotspots such as wildfires. This study demonstrated that the
integration of low-cost sensors with regulatory monitoring and
other sources of information such as satellite remote sensing
can provide new insights into PM2.5 pollution. PurpleAir is a
global monitoring network with a rapid growth rate. All other
supporting data in this analysis, including satellite, meteoro-
logical, land-use, and demographic data, are not limited to our
study domain. Therefore, our two-step approach can be
generalized to other regions to derive high-resolution PM2.5
exposure estimates. The proposed approach is also informative
to other meteorological, geographical, and ecological citizen

science applications to calibrate large volumes of low-quality
volunteer-generated data.
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