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Highlights:

• Ground-level PM2.5 was assessed with low-cost, regulatory, and satellite data
• Low-cost sensor measurements contributed to improved modeling performance
• Reasonable PM2.5 spatial details were revealed due to abundant low-cost data
• Remaining uncertainty in calibrated low-cost data still affected modeling precision

Abstract: Regulatory monitoring networks are often too sparse to support community-scale PM2.5 ex-
posure assessment while emerging low-cost sensors have the potential to fill in the gaps. To date, limited
studies, if any, have been conducted to utilize low-cost sensor measurements to improve PM2.5 prediction
with high spatiotemporal resolutions based on statistical models. Imperial County in California is an exem-
plary region with sparse Air Quality System (AQS) monitors and a community-operated low-cost network
entitled Identifying Violations Affecting Neighborhoods (IVAN). This study aims to evaluate the contribu-
tion of IVAN measurements to the quality of PM2.5 prediction. We adopted the Random Forest algorithm
to estimate daily PM2.5 concentrations at a 1-km spatial resolution using three different PM2.5 datasets
(AQS-only, IVAN-only, and AQS/IVAN combined). The results show that the integration of low-cost sensor
measurements is an effective way to significantly improve the quality of PM2.5 prediction with an increase of
cross-validation (CV) R2 by ∼0.2. The IVAN measurements also contributed to the increased importance of
emission source-related covariates and more reasonable spatial patterns of PM2.5. The remaining uncertainty
in the calibrated IVAN measurements could still cause apparent outliers in the prediction model, highlighting
the need for more effective calibration or integration methods to relieve its negative impact.
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1 Introduction

Fine particulate matter with an aerodynamic diameter less than or equal to 2.5 micrometers (PM2.5) has
been contributing to a growing disease burden worldwide, causing premature mortalities and a variety of
morbidities including cardiovascular, cerebrovascular, and respiratory diseases (Bose et al., 2015; Burnett
et al., 2014; Madrigano et al., 2013; Sorek-Hamer et al., 2016). Traditionally, ambient PM2.5 exposure
assessments have mainly relied on measurements from ground monitoring stations. However, as regulatory
monitoring is designed to support compliance with ambient air quality standards (Hall et al., 2014), it lacks
spatial coverage to reflect detailed PM2.5 variations at the community level. Even in the United States, more
than 70% of counties do not have regulatory PM2.5 monitoring so far. Exposure misclassification due to
insufficient coverage of regulatory PM2.5 monitoring can significantly bias the estimated health impacts of
PM2.5 (Zeger et al., 2000).

Over the past decade, satellite aerosol remote sensing has emerged as a useful tool to extend the coverage of
ground PM2.5 monitoring (Bi et al., 2019; Di et al., 2016; Hu et al., 2017; Kloog et al., 2011; Ma et al., 2016;
Xiao et al., 2017). Instruments aboard polar-orbiting satellites such as the Moderate Resolution Imaging
Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR) have been supplying
Aerosol Optical Depth (AOD) retrievals with global coverage. AOD is a measure of aerosol extinction of
the solar beam along the entire vertical atmospheric column. The relationship of AOD to ground-level
PM2.5 depends on factors such as aerosol vertical profile, water content, size distribution, and composition
(Paciorek et al., 2008; van Donkelaar et al., 2010). Since many of these factors are not available at large
spatial scales, strategies such as statistical models (Hu et al., 2014; Paciorek et al., 2008; Xiao et al., 2017)
and chemical transport model (CTM)-based scaling approaches (Liu et al., 2004; van Donkelaar et al., 2010)
have been developed to recover the AOD-PM2.5 relationship. Statistical models have been widely used at
urban to national scales due to their excellent performance and ability to yield high-resolution predictions
(Chu et al., 2016). Recently, there is a growing trend of using non-parametric machine learning models such
as artificial neural networks (Di et al., 2016; Zou et al., 2015) and random forests (Bi et al., 2019; Brokamp
et al., 2018; Hu et al., 2017) to better estimate PM2.5 based on AOD and other covariates. With these
methods, spatiotemporally complete estimates of PM2.5 levels have been able to be generated (Di et al.,
2016; Just et al., 2015; Ma et al., 2016; Wang et al., 2017).

Sufficient and well-distributed ground measurements are critical to the successful development of statistical
PM2.5 models. An unevenly distributed network may limit the use of statistical models and the quality of
models may significantly decrease as the number of ground measurements reduces (Geng et al., 2018a). The
validation of prediction results may become unreliable when ground measurements are sparse and the actual
quality of predictions is even unknown in the areas without ground measurements. The requirements on
ground stations are stricter when PM2.5 has significant variations at a fine scale especially in the areas with
complex terrain and many local sources (Saide et al., 2011; van Donkelaar et al., 2006, 2010) such as Western
United States (Geng et al., 2018b; van Donkelaar et al., 2006). Additionally, as regulatory monitoring
primarily aims to examine the compliance of air quality standards rather than assess exposure, existing
ground stations are unlikely to represent concentrations where sensitive subpopulations reside. This issue
can further limit the utility of regulatory monitoring data in community-level exposure assessment.

Recently emerged low-cost PM2.5 sensors have the potential to fill in the gaps of regulatory PM2.5 monitoring
and to overcome the limitations of statistical models based solely on regulatory measurements. With the
features of lower instrument cost, ease of use, and portability (Jiao et al., 2016; Snyder et al., 2013), low-
cost PM2.5 sensors can be densely deployed by researchers, grass-roots organizations, and citizen scientists.
For example, a commercial low-cost PM monitoring network established in 2015, PurpleAir (https://www.
purpleair.com/), has more than 7,000 nodes worldwide with a growth rate of ∼30 per day (Morawska
et al., 2018). The emergence of low-cost sensors has been shifting the paradigm of air pollution monitoring
from being based solely on regulatory networks to mixed networks consisting of both regulatory and low-
cost monitors (Snyder et al., 2013), and from being conducted by government agencies to increasingly
commercial/crowd-funded projects (Morawska et al., 2018; Snyder et al., 2013). As most of the low-cost
PM2.5 sensors use optical light scattering to count particles and convert them to mass concentrations, they
tend to have lower accuracy and precision than regulatory monitors (Xu, 2001). However, growing efforts
have been made to calibrate low-cost PM2.5 measurements in both laboratory and ambient settings (Broday
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et al., 2017; Cao and Thompson, 2017; Castell et al., 2017; Holstius et al., 2014; Kelly et al., 2017; Wang
et al., 2015). With a significant amount and a high growth rate, low-cost sensors are expected to shed light
on more detailed spatial variations of PM2.5 at finer scales.

To date, limited studies have focused on using low-cost sensor measurements to improve PM2.5 prediction
with high spatiotemporal resolutions. This study aimed to evaluate the contribution of low-cost sensor
measurements to the estimation of PM2.5 levels in the areas where sparse regulatory monitors alone cannot
support reliable predictions. This case study focused on Imperial County, California, an exemplary region
with PM2.5 pollution intermittently exceeding the U.S. air quality standard (35 µg/m3 for 24-hour PM2.5 and
12 µg/m3 for annual PM2.5) especially near the U.S.-Mexico border. The PM2.5 pollution is also associated
with critical health issues which promoted a community-based low-cost monitoring network designed to
address public concerns about the ability of regulatory monitors to reflect true pollution in local communities
(English et al., 2017). Based on both regulatory and low-cost measurements in Imperial County, daily PM2.5

predictions with a 1-km resolution were generated by the Random Forest algorithm with satellite AOD and
relevant covariates. The reliability of PM2.5 predictions before and after the integration of low-cost PM2.5

measurements were investigated. The limitation of low-cost PM2.5 measurements caused by their remaining
uncertainty and the future perspectives of better utilizing these measurements were also discussed.

2 Data and Methods

2.1 Study Domain

Imperial County is located in the southern part of the U.S. state of California, bordering the Mexican state of
Baja California. This county has PM2.5 levels frequently exceeding the U.S. air quality standard with a high
rate of childhood asthma-related emergency room visits (CEHTP, 2018). The desert on its west side, the
dry lake bed of a saline lake (the Salton Sea) where an exposed playa is contributing to dust levels (Parajuli
and Zender, 2018), and the transboundary pollution have caused substantial variability of PM2.5 levels in
different communities of the county (English et al., 2017). However, by 2017, there were only three U.S.
Environmental Protection Agency (EPA) Air Quality System (AQS) stations within the county and three
additional near the county that spans over 40,000 square kilometers (Figure 1). To meet the request of local
communities about more extensive PM2.5 measurements, a low-cost PM2.5 monitoring network, Identifying
Violations Affecting Neighborhoods (IVAN), has been established by a community-engaged research project
(English et al., 2017). As of 2017, the IVAN had built ∼40 community PM2.5 monitoring sites throughout
the county.

In this study, the AQS and calibrated IVAN measurements in Imperial County were served as ground truth
for PM2.5 prediction. Figure 1 shows the study domain with the locations of AQS and IVAN sites. The
study domain includes a 50-km buffer beyond the county border to include nearby AQS stations and better
illustrate the patterns of transboundary pollution. Within the study domain, there were 6 AQS stations
and 39 IVAN sensors. A 1-km modeling grid covers the study domain, which totals 41,344 grid cells. The
modeling period was from September 2016 to November 2017 to be consistent with the time span of available
calibrated IVAN PM2.5 measurements.

2.2 PM2.5 Measurements

Regulatory PM2.5 measurements were provided by the U.S. EPA AQS (https://www.epa.gov/outdoor-
air-quality-data). Low-cost PM2.5 measurements were provided by the IVAN air monitoring system
(https://www.ivan-imperial.org/). The IVAN low-cost PM sensor was a modified version of particle
counter Dylos 1700 (Dylos Corporation, Riverside, California). Raw particle counts from Dylos sensors were
calibrated and converted to hourly PM2.5 mass concentrations using the conversion equation developed by
Carvlin et al. (2017). After a validation with additional collocated reference instruments, Carvlin et al.
(2017) found that the conversion accuracy was moderate to high with R2 values ranging from 0.35 to 0.81
with an average of 0.59. In this study, hourly IVAN PM2.5 concentrations were further averaged into daily
means (Section 1, Supplementary Material). Negative PM2.5 measurements from both networks caused by
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Figure 1: Study domain (latitude: [32.2◦N, 33.9◦N]; longitude: [113.9◦W, 116.6◦W]). Imperial County is
part of the Southern California border region contiguous to the Mexican state of Baja California. The area
surrounded by the dashed line is a buffer mainly used to better reflect transboundary pollution.

random errors in a clean environment (approaching 0 µg/m3) were retained to prevent systematic biases
(Paciorek et al., 2008).

2.3 AOD Retrievals

The Multi-Angle Implementation of Atmospheric Correction (MAIAC) is an advanced MODIS AOD product
with global coverage at a 1-km spatial resolution on a daily basis (MCD19, https://modis-land.gsfc.
nasa.gov/MAIAC.html). In order to reflect daytime changes of AOD, Terra (descending node at 10:30 a.m.
local time) and Aqua (ascending node at 1:30 p.m. local time) AOD served as two separate variables in
the prediction models. According to the quality assessment parameters within MAIAC, the AOD retrievals
with poor quality were filtered out. We followed the approach proposed by Bi et al. (2019) to fill in missing
AOD values, in which Random Forest models with AOD-related predictors were established at the daily
level (Section 2, Supplementary Material).

2.4 Meteorological Data

Cloud fraction, as the percentage of cloud cover, is an important covariate in AOD gap-filling since most of
the missing AOD data were caused by the existence of cloud in Imperial County. In this study, satellite-
observed cloud fractions were obtained from the MODIS Level-2 Cloud product (MOD06 L2/MYD06 L2,
https://modis.gsfc.nasa.gov/). Other meteorological variables were obtained from the High-Resolution
Rapid Refresh (HRRR) (https://rapidrefresh.noaa.gov/hrrr/), a National Oceanic and Atmospheric
Administration real-time 3-km resolution updated atmospheric model. The HRRR meteorological param-
eters include 2-meter temperature and specific humidity, planetary boundary layer (PBL) height, sensible
heat net flux, frictional velocity, and 10-meter wind direction and speed. These HRRR fields were from the
initial forecast hour of operational hourly 18-hour forecast runs. The fields were obtained from the University
of Utah Center for High-Performance Computing real-time HRRR archive (http://hrrr.chpc.utah.edu/)
(Blaylock et al., 2017).
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2.5 Land-Use Data

The land-use parameters include 1) the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation at a 1 arc-second (∼30 m) resolution (https://asterweb.jpl.nasa.
gov/gdem.asp), 2) LandScan ambient population in 2016 at a 900-m resolution (https://web.ornl.gov/
sci/landscan/), 3) Normalized Difference Vegetation Index (NDVI) from the MODIS vegetation indices
(MOD13/MYD13) at a 500-m resolution, 4) the distance to the nearest major road computed from Topo-
logically Integrated Geographic Encoding and Referencing (TIGER)/Line Geodatabases of the U.S. Census
Bureau and DIVA-GIS (http://www.diva-gis.org/), 5) 0 – 10 cm soil moisture from the North American
Land Data Assimilation System (NLDAS) Noah Land Surface Model at a 0.125-degree resolution, 6) 8-day
land surface temperature from the MODIS land products (MOD11A2/MYD11A2) at a 1-km resolution,
and 7) the percentages of grassland and water body calculated from GlobCover V2.3 land cover product
(European Space Agency, http://due.esrin.esa.int/page_globcover.php).

2.6 PM2.5 Prediction Models

To evaluate the contribution of low-cost sensor measurements to the quality of PM2.5 estimates, three models
with different types of dependent variables were built: 1) the AQS-only model, 2) the IVAN-only model,
and 3) the AQS/IVAN-combined model. In the first two models, either AQS or IVAN PM2.5 measurements
were used as the dependent variable. In the third model, both AQS and IVAN PM2.5 measurements were
combined. Since the IVAN measurements had been calibrated and validated with collocated reference-grade
measurements (Carvlin et al., 2017), we treated these measurements as ground truth and simply merged them
with AQS measurements. Three models shared the same set of independent variables shown in Table 1. The
models were based on the Random Forest (RF) algorithm. RF is an “ensemble learning” method generating
a number of decision trees and aggregating the regression results from these trees (Breiman, 2001). Other
statistical models such as the multi-stage LME-GAM (Linear Mixed Effects-Generalized Additive Model)
(Xiao et al., 2017), XGBoost (Xiao et al., 2018), and artificial neural networks (Di et al., 2016) were also
tested in the pilot stage of this study, but RF was able to generate the most stable and accurate predictions.
The number of decision trees in the forest (ntree) and the number of predictors randomly tried at each split
(mtry) are two major hyperparameters of RF. In this study, ntree was set to be 1,000 to guarantee the sta-
bility of predictions and mtry was tuned with cross-validation (CV) and determined to be 6. The prediction
model could generate spatiotemporally continuous PM2.5 estimates with a 1-km resolution at the daily level.
The evaluation of the models was conducted with 10-fold CV (i.e., dropping 10% of PM2.5 observations).
Evaluation metrics include CV R2 and root-mean-square error (RMSE). The 10-fold CV consists of overall,
spatial, and temporal CVs (Xiao et al., 2017). 10-fold spatial/temporal CV creates validation sets according
to the locations/Julian days of measurements (i.e., dropping 10% of all locations/days of observations).
Spatial and temporal CVs demonstrate model predictability at different locations and times than the obser-
vations used to train the model. Additionally, RF-specific “permutation accuracy importance” (Breiman,
2001) was used to reflect the importance of covariates in the prediction model. This importance measure
is estimated according to the decrease of prediction accuracy when randomly permuting the “out-of-bag”
sample of the targeting variable (Liaw and Wiener, 2002).

The independent variables were determined based on the PM2.5 emission features in Imperial County. As
fugitive dust was emitted from the dry lake bed of the Salton Sea (King et al., 2011; Parajuli and Zender,
2018), we used wind speed and direction, surface soil moisture, and land surface temperature to reflect the
properties of dust emission jointly. PM2.5/PM10 ratio, i.e., the percentage of PM2.5 in PM10, was found to
be a critical predictor with a high RF variable importance value. This predictor has rarely been considered
in previous studies regarding PM2.5 prediction. As several PM2.5 emission sources in Imperial County also
emitted a large amount of PM10 (e.g., dust emissions) (Chow et al., 2000; Parajuli and Zender, 2018), this
ratio could help to modify the relationship between AOD and PM2.5. Another ancillary covariate, PM2.5

convolutional layer, was created following Hu et al. (2017) who showed that this variable could improve the
accuracy of PM2.5 prediction by considering PM2.5 spatial autocorrelation.
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Table 1: Independent variables in three PM2.5 prediction models (s - spatially varying; t - temporally
varying).

Prediction Variables
MAIAC AOD PM2.5-ancillary variables

Gap-filled Terra/Aqua AOD(s,t) PM2.5 convolutional layer(s,t)
Land-use variables PM2.5/PM10 ratio(t)

Elevation(s) Meteorological variables
Population(s) 2-meter temperature(s,t)
NDVI(s,t) 2-meter specific humidity(s,t)

Nearest distance to road(s) Planetary boundary layer height(s,t)
0 – 10 cm soil moisture(s,t) Sensible heat net flux(s,t)

Land surface temperature(s,t) Frictional velocity(s,t)

Percentage of grassland(s) 10-meter wind direction(s,t)

Percentage of water body(s) 10-meter wind speed(s,t)

3 Results

3.1 Summary Statistics and Modeling Performance

Within the study domain, AQS PM2.5 measurements had a mean of 8.55 µg/m3 with an interquartile range
(IQR) of 5.80 µg/m3 (25% and 75% percentiles: [5.00 µg/m3, 10.80 µg/m3]). IVAN PM2.5 measurements
had a mean of 7.44 µg/m3 with an IQR of 5.28 µg/m3 (25% and 75% percentiles: [3.65 µg/m3, 8.93 µg/m3]).
AQS measured slightly higher PM2.5 concentrations (∼1 µg/m3) than IVAN during the study period. The
performance of three PM2.5 prediction models (AQS-only, IVAN-only, and AQS/IVAN) was summarized
in Table 2. Figure 2 shows cross-validation’s scatter plots of the models. Six AQS stations only provided
1,617 samples and the overall 10-fold CV R2 of the AQS-only model was 0.53. The spatial CV R2 of the
model dropped to 0.24, indicating that the AQS measurements alone could not support reliable prediction
of PM2.5 spatial patterns. In contrast, 39 IVAN sensors provided 11,965 samples and the IVAN-only model
had an overall 10-fold CV R2 of 0.75. The spatial and temporal CV R2 values of this model (0.64 and
0.70, respectively) were slightly lower than the overall CV R2 but still significantly higher than those of the
AQS-only model. All three models had similar RMSE values ranged from 3.71 to 3.76 µg/m3. This was a
reasonable value consistent with Hu et al. (2017) who had a regional RMSE of 3.32 µg/m3 in the western
climate region (including California and Nevada) in their U.S. national PM2.5 prediction model for the year
of 2011.

Apart from the regular CV, the AQS measurements were also used as a test set to validate the IVAN-only
model. This validation was designed to examine to what extent the IVAN-based predictions could agree with
AQS measurements and whether the IVAN measurements alone could support a reliable PM2.5 prediction
model. The validation showed an R2 of 0.43 between the AQS measurements and the IVAN-based predictions.
This R2 value is lower than the CV R2 of the AQS-only model, 0.53. The decreased R2 indicates that the
IVAN-based predictions still deviated from actual PM2.5 levels to a certain degree. Given the moderate
to high correlation between calibrated IVAN measurements and collocated reference observations (Carvlin
et al., 2017), we infer that the deviation may be due to the uncertainty in calibrated IVAN measurements
which was not able to be reduced (the remaining uncertainty of IVAN hereinafter). Less representative
monitor siting of IVAN could be another potential reason for the lower agreement (Geng et al., 2018a).
This validation emphasized the importance and necessity of keeping high-quality regulatory measurements
in PM2.5 prediction even though they are temporally less-frequent and spatially sparser.

After combining the AQS and IVAN observations, the modeling performance had a slight decrease with
overall, spatial, and temporal CV R2 values of 0.73, 0.63, and 0.70, respectively. Again, we infer that the
decreased performance could be caused by the remaining uncertainty of IVAN. This uncertainty could be
seen in the scatter plot of the IVAN-only model as there were more apparent outliers deviating from the 1:1
line (Figure 2(b)). The remaining uncertainty again indicates that good fitting performance of the IVAN-
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only model did not necessarily mean an accurate representation of actual PM2.5 levels. We considered the
AQS/IVAN model as the optimal model because it incorporated both detailed spatial patterns of PM2.5

provided by IVAN and additional accurate PM2.5 constraint provided by AQS.

Table 2: The performance of three models with overall, spatial, and temporal CV R2 and RMSEs.

Model N Overall CV R2 Spatial CV R2 Temporal CV R2 RMSE
AQS-Only 1,617 0.53 0.24∗ 0.55 3.76 µg/m3

IVAN-Only 11,965 0.75 0.64 0.7 3.71 µg/m3

AQS/IVAN 12,902 0.73 0.63 0.7 3.72 µg/m3

∗6-fold (leave-one site-out) spatial CV as there were only 6 AQS stations

Figure 2: 10-fold CV scatter plots of three models: (a) AQS-only model, (b) IVAN-only model, and (c)
AQS/IVAN model.

3.2 Analyses with PM2.5 Predictions

Statistical metrics such as CV R2 and RMSE only reflect model predictability at monitoring locations.
Within our study domain, ground monitors were not evenly distributed, leaving large areas in the southern
and eastern parts uncovered (Figure 1). This uneven distribution reduced the effectiveness of the statistical
metrics. Due to the lack of reliable references regarding PM2.5 pollution in Imperial County from other
sources, we focused more on analyzing the features of prediction results to examine the quality of PM2.5

estimates and the contribution of IVAN measurements to the prediction.

Figure 3 shows the averaged distributions of daily PM2.5 estimates during the study period. The AQS-based
distribution emphasized PM2.5 pollution near major roads by showing spatially resolved PM2.5 concentrations
on the road network (Figure 3(a)). This road-specific feature may be related to a fact that the AQS stations
were relatively close to the major roads in the study domain. The mean distance from 6 AQS stations to
the major roads was ∼600 m and the maximum distance was ∼2,000 m. On the contrary, the IVAN sites
had a mean distance of ∼7,600 m with a maximum longer than 10,000 m. The distance-to-road of the IVAN
sites also distributed more evenly within its range compared to which of the AQS stations. The lack of AQS
stations away from the major roads reduced the ability of AQS to reflect off-road pollution. The PM2.5

estimates derived from the IVAN-only model (Figure 3(b)) and the AQS/IVAN model (Figure 3(c)) did not
show road-specific patterns but smoother PM2.5 distributions. This result indicates that more extensively
distributed IVAN measurements could better reflect off-road pollution sources.

Apart from more credible PM2.5 spatial patterns, the contribution of IVAN measurements can also be
reflected by the importance of pollution source-related covariates in the models. Table 3 shows the top-10
important covariates determined by the RF algorithm in three models. In the AQS-only model, temporally
varying parameters such as meteorological parameters (PBL height, wind speed and direction, and sensible
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heat net flux) dominated the most important covariates. This feature reflects that sparse AQS measurements
well captured temporal patterns of PM2.5 but provided limited information regarding the spatial distribution
of PM2.5, which echoes the low spatial CV R2 in the AQS-only model (Table 2). On the contrary, time-
invariant and source-related parameters, especially population, elevation, the nearest distance to road, and
the percentage of grassland, had increased importance in the IVAN-only and AQS/IVAN models. The
increased importance of these source-related covariates indicates that spatially denser IVAN measurements
resolved more spatial information of PM2.5 in different geographical environments associated with varying
pollution sources.

The PM2.5 spatial patterns derived from the AQS/IVAN model can be explained properly with the emission
sources in Imperial County, and these patterns are also consistent with the coarser distributions observed
in previous studies (Di et al., 2016; Hu et al., 2017; Parajuli and Zender, 2018). In the AQS/IVAN-based
estimates, the highest PM2.5 levels occurred on the U.S.-Mexico border, especially in the border cities
Calexico and Mexicali where annual PM2.5 level exceeded the U.S. air quality standard of 12 µg/m3 during
the study period. This transboundary PM2.5 hot-spot was also shown in Hu et al. (2017) who estimated
PM2.5 levels in the contiguous U.S. at a 12-km resolution. This hot-spot was not captured by the AQS-based
predictions because of limited AQS stations located in similar geographical environments (only one station
near the border). Elevated PM2.5 levels also occurred on the desert and exposed playa over the southwest
shore of the Salton Sea. These high PM2.5 levels were likely to be associated with dust emissions in the areas,
which is supported by Parajuli and Zender (2018) who suggested that newly exposed playa of the Salton
Sea had contributed to a large amount of dust emissions in the southwest side of the lake. Brawley, a city
in the south of the Salton Sea, showed a moderate PM2.5 hot-spot with mean PM2.5 concentrations ranged
from 7.1 to 7.8 µg/m3. The elevated PM2.5 might be related to the significant cattle and feed industry in
the city as the pulverized manure and animal activity in cattle feedlots may contribute to the emissions of
ammonia and nitric oxide that subsequently lead to the formation of secondary PM2.5 (Rogge et al., 2006;
Wilson et al., 2002).

It should be noted that although the PM2.5 patterns derived from the AQS/IVAN model (Figure 3(c)) were
similar to which of the IVAN-only model (Figure 3(b)) due to the dominance of IVAN measurements, the
additional AQS measurements still led to noticeable changes. For example, the lower-left AQS station outside
the county’s border resulted in decreased PM2.5 levels in its neighboring broad, mountainous areas covered
by dense vegetation. The lower PM2.5 levels could be explained by the reduced ventilation and transport
of pollutants affected by topography and less residential emissions associated with fewer people living in
the region (Chow et al., 2006). This result again shows the importance of keeping AQS measurements in
the prediction model despite their smaller sample size. Figure S1 shows the PM2.5 distributions by season.
In spring and summer, PM2.5 had higher background levels and lower peak levels due to the atmospheric
conditions favorable for diffusion. In contrast, PM2.5 tended to be accumulated in winter due to stagnant
weather conditions.

Table 3: Top-10 important covariates determined by the RF algorithm in three prediction models. The
bold font highlights the time-invariant and source-related covariates with the increased importance after the
addition of IVAN.

Rank AQS-Only IVAN-Only AQS/IVAN
1 PM2.5 convolutional layer PM2.5 convolutional layer PM2.5 convolutional layer
2 PBL height PBL height Population
3 NDVI Population Elevation
4 0 – 10 cm soil moisture Elevation PBL height
5 10-meter wind direction PM2.5/PM10 ratio NDVI
6 2-meter specific humidity 0 – 10 cm soil moisture Percentage of grassland
7 10-meter wind speed NDVI PM2.5/PM10 ratio
8 Sensible heat net flux Nearest distance to road 0 – 10 cm soil moisture
9 PM2.5/PM10 ratio Percentage of grassland Nearest distance to road
10 Frictional velocity 2-meter specific humidity 2-meter temperature
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Figure 3: Mean PM2.5 distributions for the period from September 2016 to November 2017 generated by
three models: (a) AQS-only model, (b) IVAN-only model, and (c) AQS/IVAN model. The points show mean
PM2.5 concentrations at the AQS and IVAN stations during the period.

3.3 Impact of IVAN Remaining Uncertainty

Given the moderate to high agreement between IVAN and collocated reference measurements after calibra-
tion (Carvlin et al., 2017), we analyzed the prediction outliers to evaluate the influence of the remaining
uncertainty of IVAN on the prediction accuracy. We defined an outlier as a prediction a factor of two greater
or smaller than the corresponding measurement in cross-validation. As we kept negative PM2.5 observations,
the predictions with a reversed sign were also considered as outliers. Figure 4 shows the CV scatter plot
the same as Figure 2(c) with outliers in different colors. There were 1,500 outliers among the total 12,902
predictions, in which 312 were underestimated and 1,188 were overestimated. Compared to previous PM2.5

modeling efforts based solely on regulatory measurements (Ma et al., 2016; Xiao et al., 2017), this CV scat-
ter plot has more apparent outliers. Figure S2 shows the frequencies of outliers in different grid cells and
Figure S3 shows the relationships between the number of outliers and the number of total observations in
a grid cell. We found that the outliers were randomly distributed without specific spatiotemporal patterns
and the number of outliers was positively associated with the number of total observations in a grid cell.
The results reflect that the remaining uncertainty of IVAN still had an evident influence on the predictions,
which homogeneously affected the modeling accuracy. The only collocated AQS/IVAN site (Calexico-Ethel
Site, located at the Calexico High School on East Belcher Street) in the study domain could not support
comprehensive analyses of outliers, and it remains unknown that what the sources of these outliers were,
how these sources were associated with the prediction accuracy, and why overestimated outliers dominated
the prediction biases.

4 Discussion

Imperial County is an exemplary region for studying the effectiveness of low-cost PM measurements in the
U.S. The PM (PM2.5 and PM10) pollution in this county frequently exceeds state and national air quality
standards (CARB, 2017). Poor air quality, poverty, and a high unemployment rate are associated with
severe health issues such as childhood asthma, which lead to increasing needs voiced by the local residents
for a comprehensive and accurate display of air quality (English et al., 2017). During the development of the
IVAN network, community members were involved in the study design and monitor siting, and the study
community partner staff were trained in monitor assembly/troubleshooting and data transfer and analysis
(Wong et al., 2018). The IVAN network is now community operated and maintained. Developed community
capacity to run the low-cost network addresses the core of environmental health issues in this primarily
Hispanic and monolingual area by providing neighborhood-level data on air quality and increasing local
environmental health literacy (Garzón-Galvis et al., 2019).

In this study, we evaluated the contribution of IVAN to PM2.5 prediction in Imperial County with complex
local PM2.5 sources and a sparse regulatory network. On the one hand, our results show that current AQS
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Figure 4: The 10-fold CV scatter plot of the AQS/IVAN model. The black dashed lines (with slopes of 2
and 0.5) divide the points into normal predictions and outliers. The points in red are overestimated outliers
and the points in blue are underestimated outliers.

within the county could not support reliable PM2.5 predictions as indicated by the significantly lower spatial
CV R2 of the AQS-only model compared to its overall CV R2. The IVAN measurements, albeit noisier,
were found to be able to serve as an effective supplement to the regulatory measurements to improve the
modeling performance and prediction quality. Dense IVAN measurements also helped the predictions better
resolve the spatial details of local pollution sources. On the other hand, although AQS was spatially sparser
and temporally less-frequent than IVAN, its “gold-standard” measurements are still indispensable in PM2.5

prediction. The necessity of keeping AQS was reflected by a lower validation R2 when using the IVAN-only
model to predict AQS measurements compared to the CV R2 of the AQS-only model itself. The necessity was
also reflected by more reasonable PM2.5 prediction patterns around the AQS stations when combining AQS
and IVAN. The combined AQS/IVAN predictions were in line with the coarser PM2.5 patterns generated
by the national-level models (Di et al., 2016; Hu et al., 2017), and the predicted PM2.5 hot-spots can be
properly explained by local PM2.5 sources such as dust, transboundary, and agricultural pollution. Our
analyses implicate that the combination of regulatory and low-cost sensor measurements is an effective way
to improve the quality of PM2.5 modeling and enable high-resolution PM2.5 predictions in which they were
impossible previously.

To date, the proposed calibration methods for low-cost PM2.5 measurements have mainly focused on correct-
ing systematic biases rather than reducing random errors commonly existing in the measurements (Carvlin
et al., 2017; Holstius et al., 2014). In this study, we found that the remaining errors in the IVAN measure-
ments, especially random errors, still had an apparent impact on the quality of PM2.5 prediction after a
calibration aiming to reduce the systematic biases (Carvlin et al., 2017). The influence of remaining uncer-
tainty was reflected by obvious outliers in cross-validation scatters. As the uncertainty had a homogeneous
effect on the predictions without obvious spatiotemporal patterns, it was difficult to pinpoint and remove
inaccurate measurements. Additional studies with sufficient collocated regulatory/low-cost monitor pairs are
needed for in-depth analyses regarding the low-cost sensor measurements’ remaining uncertainty, e.g., the
sources of uncertainty and the quantitative influence of uncertainty on the prediction quality. The calibra-
tion methods aiming to reduce the random errors of low-cost sensor measurements, in addition to systematic
biases, are also a potential way to improve the quality of PM2.5 prediction.

Although spatiotemporally continuous PM2.5 can be generated with CTMs, their simulations are difficult
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to reflect detailed PM2.5 pollution patterns at the community level. Specifically, the relatively coarse reso-
lution and restricted emission information of CTMs limit their ability to characterize PM2.5 distribution at
small scales (Jerrett et al., 2005). Our study proved that the combination of dense and frequent low-cost
sensor measurements, spatiotemporally continuous satellite AOD retrievals, and accurate reference-grade
measurements is a possible solution to derive high-resolution PM2.5 distribution details. Although the U.S.
has one of the densest regulatory air quality monitoring networks in the world, only ∼2% of its counties
have more active AQS PM2.5 stations than Imperial County (with 3 active stations) (Figure 5(a)), and only
∼20% of the counties have a higher AQS station density than Imperial County (2.58 stations per 10,000
square kilometers) (Figure 5(b)). Accordingly, low-cost sensors have enormous potential to be applied to
the vast regions in the U.S. and a large part of the world with sparse regulatory monitors to better support
small-scale PM2.5 prediction and help address PM2.5-related health issues.

A major limitation of this study is the lack of reliable reference PM2.5 measurements in Imperial County
from other sources, which prevented quantitative assessments of our PM2.5 estimates. However, many clues
regarding the prediction models such as CV performance, variable importance, and spatial patterns of PM2.5

estimates provided evidence that the integration of IVAN could lead to a better prediction quality in the
region. Additional studies with sufficient reference measurements are needed to further prove the findings.
The scale of the IVAN network is another potential limitation affecting the generalizability of our findings.
As a county-level low-cost network with ∼40 sensors, which has been well maintained and operated by
local communities, IVAN is less representative of other low-cost PM networks worldwide which may not be
well maintained as such. A more general and extensive low-cost PM network is needed to further examine
the effectiveness of our proposed PM2.5 prediction framework and to test new methods regarding better
utilization of low-cost sensor measurements in PM2.5 prediction. PurpleAir, a worldwide commercial PM
monitoring network built with low-cost sensors, is a potential one when it evolves to have enough coverage
and density.

Figure 5: The contiguous U.S. counties in blue are those with a greater (a) number (∼2% of the total
counties) or (b) density (∼20% of the total counties) of AQS PM2.5 stations than Imperial County in 2017.
The red areas are the potential regions in the U.S. where our proposed PM2.5 prediction framework with
low-cost sensor measurements can be applied to generate PM2.5 spatial details.

5 Conclusions

With an exemplary low-cost air quality monitoring network in Imperial County, IVAN, we evaluated the
contribution of low-cost sensor measurements to PM2.5 prediction when regulatory measurements were in-
sufficient to support reliable small-scale PM2.5 modeling. This study proved that the integration of a large
number of low-cost sensor measurements with sparse regulatory measurements is an effective way to improve
the quality of PM2.5 prediction significantly. This study also highlighted the needs of more effective calibra-
tion or integration methods to mitigate the negative impact caused by the remaining uncertainty in low-cost

11

https://doi.org/10.1016/j.envres.2019.108810


Accepted Manuscript by Environmental Research, Volume 180 (2020) 108810

sensor measurements on the prediction quality. This is the first study to report high-resolution PM2.5

distributions in Imperial County by virtue of dense low-cost sensor measurements. The proposed PM2.5

prediction framework with low-cost sensor measurements has enormous potential to be applied in vast areas
worldwide with insufficient regulatory stations to identify PM2.5 pollution details which are fundamental to
PM2.5-related health research.
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Supplementary Material 

 

1. Daily Aggregation of IVAN Measurements 

In this study, soft criteria were adopted for the aggregation of hourly IVAN measurements into 

daily data. Specifically, all available hourly measurements were used for aggregation without 

concerning the hourly coverage. IVAN is a well-maintained low-cost sensor network. Before the 

daily aggregation, the completeness and continuity of IVAN hourly measurements were 

examined. We found that the sensors had very high hourly coverage during the study period. The 

mean coverage of each site in each day was > 22 hours with an interquartile range of 0 (median: 

24 hours; 25% and 75% percentiles: 24 hours). Only < 3% of the sensor-days (the total days 

during the study period multiplies the number of sensors) had the hourly coverage < 5 hours. 

Although this small number of daily measurements aggregated from < 5 hourly measurements 

might bias the predictions at the daily level, this uncertainty may have limited influence on our 

major conclusions which were mainly based on the overall prediction pattern during the study 

period. 

 

2. AOD Missingness and Gap-Filling 

Satellite AOD has a large proportion of missing retrievals over land due to cloud cover and high 

surface brightness (e.g., standing water). Missing AOD retrievals have significantly hindered the 

generation of fully-covered PM2.5 estimates. Recent studies overcome this obstacle by estimating 

missing AOD data before predicting PM2.5, a process called AOD gap-filling (Bi et al. 2019; Li 

et al. 2012; Van Donkelaar et al. 2011; Xiao et al. 2017). In this study, we followed the approach 

proposed by Bi et al. (2019) to conduct AOD gap-filling, in which random forest models with 

AOD-related predictors were established at a daily level. The predictors consisted of 1) cloud 

fraction, 2) 2-meter specific humidity, 3) 2-meter temperature, 4) planetary boundary layer 

height, 5) surface wind speed, and 6) spatial coordinates of AOD retrievals. The AOD gap-filling 

was separately conducted for Terra and Aqua datasets. A three-day moving time window was 

applied to increase the sample size (Xiao et al. 2017). As in Bi et al. (2019), the random forest-

specific out-of-bag (OOB) R2 and root-mean-square error (RMSE) were used to evaluate the 

performance of AOD gap-filling.  

 



During the study period (September 2016 to November 2017), Terra AOD had a mean daily 

missing rate of 36.9% with an interquartile range (IQR) from 6.3% to 69.3%. Aqua AOD had a 

mean daily missing rate of 40.8% with an IQR from 8.0% to 76.3%. Figure S4 shows the 

patterns of missing AOD retrievals of Terra and Aqua during the study period. The grid cells 

over water bodies (e.g., the Salton Sea) were filtered out (Chu et al. 2002). Besides water bodies, 

missing AOD was evenly distributed throughout the study domain with minor increases in the 

regions covered by dense vegetation. The gap-filling models had good performance with a mean 

OOB R2 of 0.95 and a mean RMSE of 0.013 for both Terra and Aqua datasets. As in Xiao et al. 

(2017) and Bi et al. (2019), we also found that the gap-filled AOD values tended to be higher 

than the original AOD retrieved under clear-sky condition. Xiao et al. (2017) and Bi et al. (2019) 

suggested that this pattern may be caused by aerosol hygroscopic growth. 

 

 

 



 

Figure S1 Mean PM2.5 distributions in different seasons generated by the AQS/IVAN model 

during the study period. 

 



 

Figure S2 Frequencies of prediction outliers at the locations of AQS and IVAN stations (left: 

overestimated predictions; right: underestimated predictions). 

  



 

 

Figure S3 Correlations between the number of outliers and the number of predictions (left: 

overestimated predictions; right: underestimated predictions). 

  



 

 

Figure S4 Distributions of the average missing rates of Terra/Aqua AOD during the study period. 
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